Hadronic light-by-light contribution to the muon anomalous magnetic moment from lattice QCD

Tom Blum (UCONN/RBRC), Norman Christ (Columbia), Masashi Hayakawa (Nagoya), Taku Izubuchi (BNL/RBRC), Luchang Jin (UConn/RBRC), Chulwoo Jung (BNL), Christoph Lehner (BNL), (RBC and UKQCD Collaborations)

Moriond Electroweak 2019

March 17, 2019
1. Introduction and background

2. Hadronic light-by-light (HLbL) scattering contribution

3. Results for QED$_L$

4. Results for QED$_\infty$

5. Summary

6. References
\[\langle \mu(p')|J_{\nu}(0)|\mu(p)\rangle = -e\bar{u}(p') \left(F_1(q^2)\gamma_{\nu} + i \frac{F_2(q^2)}{4m} [\gamma_{\nu}, \gamma_\rho] q_\rho \right) u(p) \]

\[a_\mu \equiv (g - 2)/2 = F_2(0) \quad (q = p' - p) \]
Experiment - Theory

<table>
<thead>
<tr>
<th>SM Contribution</th>
<th>Value ± Error ($\times 10^{11}$)</th>
<th>Ref</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>QED (5 loops)</td>
<td>116584718.951 ± 0.080</td>
<td>[Aoyama et al., 2012]</td>
<td></td>
</tr>
<tr>
<td>HVP LO</td>
<td>6931 ± 34</td>
<td>[Davier et al., 2017]</td>
<td>$\rightarrow 3.5\sigma$</td>
</tr>
<tr>
<td></td>
<td>6932.6 ± 24.6</td>
<td>[Keshavarzi et al., 2018]</td>
<td>$\rightarrow 3.7\sigma$</td>
</tr>
<tr>
<td></td>
<td>6925 ± 27</td>
<td>[Blum et al., 2018]</td>
<td>lattice+R-ratio (FJ17), $\rightarrow 3.7\sigma$</td>
</tr>
<tr>
<td>HVP NLO</td>
<td>-98.2 ± 0.4</td>
<td>[Keshavarzi et al., 2018]</td>
<td></td>
</tr>
<tr>
<td>HVP NNLO</td>
<td>12.4 ± 0.1</td>
<td>[Kurz et al., 2014]</td>
<td></td>
</tr>
<tr>
<td>HLbL</td>
<td>105 ± 26</td>
<td>[Prades et al., 2009]</td>
<td></td>
</tr>
<tr>
<td>HLbL (NLO)</td>
<td>3 ± 2</td>
<td>[Colangelo et al., 2014]</td>
<td></td>
</tr>
<tr>
<td>Weak (2 loops)</td>
<td>153.6 ± 1.0</td>
<td>[Gnendiger et al., 2013]</td>
<td></td>
</tr>
<tr>
<td>SM Tot</td>
<td>116591820.5 ± 35.6</td>
<td>[Keshavarzi et al., 2018]</td>
<td></td>
</tr>
<tr>
<td>Exp (0.54 ppm)</td>
<td>116592080 ± 63</td>
<td>[Bennett et al., 2006]</td>
<td></td>
</tr>
<tr>
<td>Diff (Exp − SM)</td>
<td>259.5 ± 72</td>
<td>[Keshavarzi et al., 2018]</td>
<td>$\rightarrow 3.7\sigma$</td>
</tr>
</tbody>
</table>

main messages: QCD errors dominate, Δ HLbL \sim Δ HVP, discrepancy is large

FNAL E989 running, goal to reduce BNL 821 error by 1/4
Summary of HVP theory results (lattice and dispersive)

- No new physics

Lattice QCD
- Fermilab/HPQCD /MILC 2019
- ETMC, 1808.00887
- RBC/UKQCD 1801.07224
- BMW, 1711.04980
- Mainz/CLS, 1705.01775
- HPQCD/RV 1601.03071

Pheno.
- e^+e^-
- e^+e^-
- $e^+e^- + \tau$
- $e^+e^- + \tau$

Table VI. Individual flavor contributions to the leading Taylor coefficients of the vacuum polarization function and the disconnected diagrams. Contributions are from the lattice analysis; the second comes from uncertainties on finer lattices. Analysis on QCD+QED gluon field ensembles will be important here too to take into account finite-volume uncertainty. Further details of the QED procedure are provided as supplementary material.

Analysis and Results

- Work on all of these is in progress.

Figure 4. Comparison of the R-ratio $R_{\text{Light+Strange}}$ for the 64I ensemble. The solid line is the HVP lattice result as a finite-volume error. The dashed line is the improved dispersive result as a finite-volume error.

Lattice and dispersive results agree well [Blum et al., 2018]
Outline I

1 Introduction and background

2 Hadronic light-by-light (HLbL) scattering contribution

3 Results for QED$_L$

4 Results for QED$_\infty$

5 Summary

6 References
The desired amplitude

\[
\langle \mu(x_{\text{snk}}) J_\nu(x_{\text{op}}) \bar{\mu}(x_{\text{src}}) \rangle = -eM_\nu(x_{\text{src}}, x_{\text{op}}, x_{\text{snk}})
\]

is obtained from a Euclidean space correlation function computed on the lattice

\[
\left[\left(\frac{-i \not{q}^+ + m_\mu}{2E_{q/2}} \right) F_1(q^2) \gamma_\nu + i \frac{F_2(q^2)}{4m} [\gamma_\nu, \gamma_\rho] q_\rho \right] \left(\frac{-i \not{q}^- + m_\mu}{2E_{q/2}} \right) \right]_{\alpha\beta} = \left(M_\nu(\vec{q}) \right)_{\alpha\beta},
\]
Point source method in QCD+pQED (L. Jin) [Blum et al., 2016]

- Point source propagators at x and y
- Important sampling is used to choose source locations:
 - Most of the contribution from $|x - y| \lesssim 1$ fm
 - Compute for all possible $|x - y| < r = 4 - 5$ lattice units
 - Randomly choose pairs for $|x - y| > r$
- Moment method allows computation of $F_2(q^2)$ directly at $q = 0$

Techniques produce $O(1000)$ improvement in statistical error over original method [Blum et al., 2015]
Lattice setup

- Photons: Feynman gauge, QED_L [Hayakawa and Uno, 2008] (omit all modes with $\vec{q} = 0$)
- Gluons: Iwasaki (I) gauge action (RG improved, plaquette+rectangle)
- Muons: $L_s = \infty$ free domain-wall fermions (DWF)
- Quarks: Möbius-DWF

2+1f Möbius-DWF, I and I-DSDR physical point QCD ensembles (RBC/UKQCD) [Blum et al., 2014]

<table>
<thead>
<tr>
<th></th>
<th>48I</th>
<th>64I</th>
<th>24D</th>
<th>32D</th>
<th>32D fine</th>
<th>48D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^{-1} (GeV)</td>
<td>1.73</td>
<td>2.36</td>
<td>1.0</td>
<td>1.0</td>
<td>1.38</td>
<td>1.0</td>
</tr>
<tr>
<td>a (fm)</td>
<td>0.114</td>
<td>0.084</td>
<td>0.2</td>
<td>0.2</td>
<td>0.14</td>
<td>0.2</td>
</tr>
<tr>
<td>L (fm)</td>
<td>5.47</td>
<td>5.38</td>
<td>4.8</td>
<td>6.4</td>
<td>4.6</td>
<td>9.6</td>
</tr>
<tr>
<td>L_s</td>
<td>48</td>
<td>64</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>m_π (MeV)</td>
<td>139</td>
<td>135</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>m_μ (MeV)</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>106</td>
</tr>
<tr>
<td>meas (con,disco)</td>
<td>65,65</td>
<td>43,44</td>
<td>87,80</td>
<td>64,68</td>
<td>32,31</td>
<td>62,0</td>
</tr>
</tbody>
</table>
Continuum and ∞ volume limits in QED [Blum et al., 2016]

Test method in pure QED. QED systematics large, $O(a^4)$, $O(1/L^2)$, but under control

\begin{align*}
F_2(a, L) &= F_2 \left(1 - \frac{b_1}{(m_\mu L)^2} + \frac{b_2}{(m_\mu L)^4}\right) (1 - c_1 a^2 + c_2 a^4) \rightarrow F_2 = 46.6(2) \times 10^{-10}
\end{align*}

$O(1/L^2)$ finite volume (FV) error (c.f. exponentially suppressed in QCD)

Compare to analytic result, 46.5×10^{-10}
Disconnected contributions

![Diagram of disconnected contributions]

Leading \(O(m_s - m_{u,d})\)

\[O(m_s - m_{u,d})^2\] and higher

- Only 1 diagram does not vanish in SU(3) flavor limit
- Permutations of internal photons not shown
- Gluons within and connecting quark loops not shown
- To ensure loops are connected by gluons, explicit "vacuum" subtraction is required
We use two point sources at y and z, chosen randomly. The point sinks x_{op} and x are summed over exactly on lattice.

- Only point source quark propagators are needed. We compute M point source propagators and all M^2 combinations are used to perform the stochastic sum over $r = z - y$ (M^2 trick).

- Because of parity, expectation value for (moment of) left loop averages to zero.
Outline I

1. Introduction and background
2. Hadronic light-by-light (HLbL) scattering contribution
3. Results for QED$_L$
4. Results for QED$_\infty$
5. Summary
6. References
HLbL contribution, 139 MeV pion, \(a = 0.114 \text{ fm}, L = 5.5 \text{ fm} \) \cite{Blum2017a}

\[a_{\mu}^{cHLbL} = (11.60 \pm 0.96) \times 10^{-10} \]

\[a_{\mu}^{dHLbL} = (-6.25 \pm 0.80) \times 10^{-10} \]

\[a_{\mu}^{HLbL} = (5.35 \pm 1.35) \times 10^{-10} \]

Need to extrapolate to the continuum and \(\infty \) volume limits
Lattices used for continuum and infinite volume extrapolation (from L. Jin)

48I: $48^3 \times 96$, 5.5fm box

64I: $64^3 \times 128$, 5.5fm box

24D: $24^3 \times 64$, 4.8fm box

32Dfine: $32^3 \times 64$, 4.8fm box

32D: $32^3 \times 64$, 6.4fm box
Continuum and infinite volume extrapolation

\[F_2(a, L) = F_2(1 - c_1 (m \mu L)^2)(1 - c_2 a^2) \]

\[a^c_{\mu HLbL} = (28.46 \pm 3.66_{\text{stat}} \pm 0.28_{\text{sys,a^2}}) \times 10^{-10} \]

\[a^d_{\mu HLbL} = -12.39 \pm 2.09_{\text{stat}} \pm 1.63_{\text{sys,a^2}} \times 10^{-10} \]

\[a^H_{\mu LbL} = 16.06 \pm 3.90_{\text{stat}} \pm 1.91_{\text{sys,a^2}} \times 10^{-10} \]
Outline I

1 Introduction and background

2 Hadronic light-by-light (HLbL) scattering contribution

3 Results for QED$_L$

4 Results for QED$_\infty$

5 Summary

6 References
Infinite volume QED$_\infty$ [Green et al., 2015, Asmussen et al., 2016, Lehner and Izubuchi, 2015, Jin et al., 2015, Blum et al., 2017b]

Compute QCD part in finite volume, QED in ∞ volume

- Mainz group made first concrete proposal for QED$_\infty$
- QED$_\infty$: muon, photons computed in infinite volume, continuum (c.f. HVP)
- Leading FV error is exponentially suppressed (c.f. HVP) instead of $O(1/L^2)$
 - QCD mass gap: $\mathcal{H}(x, y, z, x_{op}) \sim \exp -m_\pi \times \text{dist}(x, y, z, x_{op})$
 - QED weight function does not grow exponentially
\(QED_\infty \) results- pure QED, lattice-spacing error [Blum et al., 2017b]

\[
\frac{F_2}{(\alpha/\pi)^3} = 0.3686(37)(35) \text{ and } 0.1232(30)(28) \text{ compared to QED perturbation theory results: } 0.371 \text{ and } 0.120
\]
cHLbL, QED$_\infty$, 139 MeV pion, $a = 0.2$ fm, $L = 6.4$ fm (preliminary)

Noisier than QED$_L$

![Graph showing Pion TFF, Lattice 32D, and Combine graphs with error bars]

Combine lattice (short distance) up to R_{max} and pion (LMD) model (long distance) R_{max} to ∞ for most precise result.
dHLbL, QED_∞ (non-leading diagram), $m_\pi = 139$ MeV, $a = 0.2$ fm (preliminary)

result is negligible compared to error on leading contributions
Outline I

1 Introduction and background

2 Hadronic light-by-light (HLbL) scattering contribution

3 Results for QED$_L$

4 Results for QED$_\infty$

5 Summary

6 References
Hadronic light-by-light summary and outlook

- Lattice QCD(+QED) calculations done with physical masses, large boxes + improved measurement algorithms
- Physical point calculations published at $a = 0.114$ fm, 5.5 fm box [Blum et al., 2017a]
- Preliminary $a \to 0$, $L \to \infty$ limits taken in QED$_L$
 - connected, disconnected significant corrections
 - non-leading disconnected diagram makes small contribution
 - improving statistics
 - consistent with model, dispersive results.

- QED$_\infty$ noisier, $a \to 0$, $L \to \infty$ (QCD) limits in progress
- unlikely that HLbL contribution will rescue standard model

Muon g-2 Theory Initiative aims to have white paper this year, before E989 announces first results
Acknowledgments

- Thanks to Prof. Luchang Jin for help preparing this talk
- This research is supported in part by the US DOE
- Computational resources provided by the RIKEN BNL Research Center, RIKEN, USQCD Collaboration, and the ALCF at Argonne National Lab under the ALCC program
Outline I

1 Introduction and background

2 Hadronic light-by-light (HLbL) scattering contribution

3 Results for QED$_L$

4 Results for QED$_\infty$

5 Summary

6 References
Complete Tenth-Order QED Contribution to the Muon g-2.

Position-space approach to hadronic light-by-light scattering in the muon $g - 2$ on the lattice.
PoS, LATTICE2016:164.

Bennett, G. et al. (2006).
Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL.

Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment.
to be published, Phys. Rev. Lett.
Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD.

Using infinite volume, continuum QED and lattice QCD for the hadronic light-by-light contribution to the muon anomalous magnetic moment.

Blum, T. et al. (2014).
Domain wall QCD with physical quark masses.

Remarks on higher-order hadronic corrections to the muon $g-2$.

Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon $g - 2$ and $\alpha(m_Z^2)$ using newest hadronic cross-section data.

The electroweak contributions to $(g - 2)_{\mu}$ after the Higgs boson mass measurement.

Lattice QCD calculation of hadronic light-by-light scattering.

Towards the large volume limit - A method for lattice QCD + QED simulations.