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s → J/ψφ decay

The decay B0
s → J/ψφ is the B0

s analogue of the decay B0 → J/ψK0
S, with the spectator

d-quark replaced by an s-quark. However, there are four major differences:

I Vts vs Vtd. Since the spectator d-quark is replaced by an s-quark, the CKM-
element responsible for the CP-asymmetry (in the Wolfenstein parameterization) is
now Vts, instead of Vtd, see Fig. 4.4. In contrast to Vtd the imaginary part of Vts is
no longer of comparable size as the real part, see Eqs. (2.10-2.11), and the predicted
CP asymmetry is therefore small, arg(Vts) ∼ ηλ2.

II No K-oscillations. The final state, containing the mesons J/ψ and φ, is the same
for the B0

s and the B̄0
s -meson, and hence we do not need the extra K-oscillation

step as in the B0 system.

III ∆Γ ≠ 0. In contrast to the B0 case, the B0
s -system has non-vanishing ∆Γ. This

is caused by the existence of a final state common to B0
s and B̄0

s , with a large

branching fraction around 5%, namely the CP-eigenstate D±(∗)
s D∓(∗)

s . Since this
is a CP-eigenstate with eigenvalue +1 this decay channel is only accessible for the
CP-even eigenstate Bs,H and not for Bs,L. Hence the different lifetime for Bs,H and
Bs,L with a predicted value of ∆Γ/Γ ∼ 0.1. (A similar situation for the B0 case
does not occur, because the branching ratio for B0 → D±D∓ is Cabibbo suppressed,
A ∼ |Vcd|.)

IV Vector-vector final state. The final state now contains two vector-particles with
spin-1. As a result the final state is not a pure CP-eigenstate, in contrast to B0 →
J/ψK0

S. The spin of the final state particles J/ψ and φ can be pointing parallel,
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CP-odd final state admixture
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Measurement of CPV at LHCb

d4Γ
dt dΩ
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k

fk(Ω) ε(t, Ω) (1 − 2ω) hk(t |B0
s ) ⊗ G(t |σt)Ω Ωε

Ω
σtω hk

- mistag probability of flavour tagging 
- efficiency as a function of decay time and angles  
- decay time resolution  

ε
σt

ω

Angular analysis is required to disentangle CP-even and  
CP-odd final state admixture
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- mistag probability of flavour tagging 
- efficiency as a function of decay time and angles  
- decay time resolution  
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Angular analysis is required to disentangle CP-even and  
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Analyses strategy

B⁰s →J/ψ K˖K˗ 

[LHCB-PAPER-2019-013]

B⁰s →J/ψ π˖π˗ 

arXiv:1903.05530

Using 2015 (0.3 fb-1) and 2016 (1.6 fb-1) data  
measure 𝜙s , |λ| and

in preparation

https://arxiv.org/abs/1903.05530


 7Katya Govorkova Moriond EW 2019                                                                  21 March 2019

Analyses strategy

B⁰s →J/ψ K˖K˗ 

[LHCB-PAPER-2019-013]

B⁰s →J/ψ π˖π˗ 

arXiv:1903.05530

Using 2015 (0.3 fb-1) and 2016 (1.6 fb-1) data  
measure 𝜙s , |λ| and

 ΔΓs and Γs - ΓB⁰  
to test the Heavy Quark Expansion 

prediction of Γs / ΓB⁰ = 1.0006 ± 0.0025

in preparation

https://arxiv.org/abs/1903.05530


 7Katya Govorkova Moriond EW 2019                                                                  21 March 2019

Analyses strategy

B⁰s →J/ψ K˖K˗ 

[LHCB-PAPER-2019-013]

B⁰s →J/ψ π˖π˗ 

arXiv:1903.05530

Using 2015 (0.3 fb-1) and 2016 (1.6 fb-1) data  
measure 𝜙s , |λ| and

 ΔΓs and Γs - ΓB⁰  
to test the Heavy Quark Expansion 

prediction of Γs / ΓB⁰ = 1.0006 ± 0.0025

 ΓH - ΓB⁰ 
 since the final state is almost 

entirely CP-odd 

in preparation

https://arxiv.org/abs/1903.05530


 7Katya Govorkova Moriond EW 2019                                                                  21 March 2019

Analyses strategy

B⁰s →J/ψ K˖K˗ 

[LHCB-PAPER-2019-013]

B⁰s →J/ψ π˖π˗ 

arXiv:1903.05530

Using 2015 (0.3 fb-1) and 2016 (1.6 fb-1) data  
measure 𝜙s , |λ| and

 ΔΓs and Γs - ΓB⁰  
to test the Heavy Quark Expansion 

prediction of Γs / ΓB⁰ = 1.0006 ± 0.0025

 ΓH - ΓB⁰ 
 since the final state is almost 

entirely CP-odd 

Simultaneous fit to the decay time and three  
helicity angles 

in preparation

https://arxiv.org/abs/1903.05530


 7Katya Govorkova Moriond EW 2019                                                                  21 March 2019

Analyses strategy

B⁰s →J/ψ K˖K˗ 

[LHCB-PAPER-2019-013]

B⁰s →J/ψ π˖π˗ 

arXiv:1903.05530

Using 2015 (0.3 fb-1) and 2016 (1.6 fb-1) data  
measure 𝜙s , |λ| and

 ΔΓs and Γs - ΓB⁰  
to test the Heavy Quark Expansion 

prediction of Γs / ΓB⁰ = 1.0006 ± 0.0025

 ΓH - ΓB⁰ 
 since the final state is almost 

entirely CP-odd 

Simultaneous fit to the decay time and three  
helicity angles 

1000 1020 1040
]2c [MeV/)−K+m(K

0

2000

4000

6000

8000

10000

)2 c
W

ei
gh

te
d 

ca
nd

s. 
/ (

0.
6 

M
eV

/

LHCbLHCb 
Preliminary

in 6 m(K˖K˗) bins

in preparation

𝜑 contribution

See YS talk by 
J.Zonneveld

https://arxiv.org/abs/1903.05530


 7Katya Govorkova Moriond EW 2019                                                                  21 March 2019

Analyses strategy

B⁰s →J/ψ K˖K˗ 

[LHCB-PAPER-2019-013]

B⁰s →J/ψ π˖π˗ 

arXiv:1903.05530
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to test the Heavy Quark Expansion 

prediction of Γs / ΓB⁰ = 1.0006 ± 0.0025

 ΓH - ΓB⁰ 
 since the final state is almost 

entirely CP-odd 
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Selection and mass fit 
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Boosted decision tree is trained to select signal candidates 

B⁰s →J/ψ K˖K˗ 

[LHCB-PAPER-2019-013]

B⁰s →J/ψ π˖π˗ 

arXiv:1903.05530

https://arxiv.org/abs/1903.05530
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Selection and mass fit 
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B⁰s →J/ψ K˖K˗ 

[LHCB-PAPER-2019-013]

B⁰s →J/ψ π˖π˗ 

arXiv:1903.05530

N(B⁰s →J/ψ K˖K˗) ≃ 117 000  

https://arxiv.org/abs/1903.05530
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B⁰s →J/ψ K˖K˗ 

[LHCB-PAPER-2019-013]

B⁰s →J/ψ π˖π˗ 

arXiv:1903.05530
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Decay time resolution
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Per-candidate decay time error is calibrated using prompt J/ψ sample

σeff = 45.5 fs σeff = 41.5 fs

B⁰s →J/ψ K˖K˗ 

[LHCB-PAPER-2019-013]

B⁰s →J/ψ π˖π˗ 

arXiv:1903.05530

In each bin of δt 
perform fit for σeff 

https://arxiv.org/abs/1903.05530
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Selection efficiency as a function of angles
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h+

Kinematic selection and detector acceptance are  
causing non uniform efficiency as function of decay angles

B⁰s →J/ψ K˖K˗ 

[LHCB-PAPER-2019-013]

B⁰s →J/ψ π˖π˗ 

arXiv:1903.05530

https://arxiv.org/abs/1903.05530
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Selection efficiency as a function of angles
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B⁰s →J/ψ K˖K˗ 

[LHCB-PAPER-2019-013]

B⁰s →J/ψ π˖π˗ 

arXiv:1903.05530

      angular distribution in MC / 
expected without acceptance effect

      fourth-order polynomial 
parameterisation 

https://arxiv.org/abs/1903.05530
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Decay time efficiency
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Use B⁰ →J/ψ K*(892)  
Fit simultaneously B⁰ data, 

simulation and B⁰s simulation
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[LHCB-PAPER-2019-013]

B⁰s →J/ψ π˖π˗ 

arXiv:1903.05530
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https://arxiv.org/abs/1903.05530
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Flavour tagging
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Tagging power is given as tagging efficiency times dilution squared 

B⁰s →J/ψ K˖K˗ 

[LHCB-PAPER-2019-013]

B⁰s →J/ψ π˖π˗ 

arXiv:1903.05530

εtag D2 D = (1 − 2ω), where

εtag D2 = 5.06 ± 0.38 %εtag D2 = 4.73 ± 0.34 %
Run1 ≈ 3.89 %Run1 ≈ 3.73 %

Two tagging algorithms are used: opposite side and same side 
For each algorithm true mistag probability is calibrated assuming 

linear dependency with estimated one 

https://arxiv.org/abs/1903.05530
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Fit projections for B⁰s →J/ψ K˖K˗
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CP asymmetry in B⁰s →J/ψ K˖K˗
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Fit projections for B⁰s →J/ψ π˖π˗
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𝜙s = −0.080 ± 0.041 ± 0.006 [rad] 
|λ| = 1.006 ± 0.016 ± 0.006 

Γs- ΓB⁰ = −0.0041 ± 0.0024 ± 0.0015 [ps-1] 
ΔΓs = 0.0772 ± 0.0077 ± 0.0026 [ps-1]

𝜙s = −0.057 ± 0.060 ± 0.011 [rad] 
|λ| = 1.01 +0.08 ± 0.03 

ΓH- ΓB⁰ = −0.050 ± 0.004 ± 0.004 [ps-1]
 −0.06

Results

Most precise measurement 
of 𝜙s   ΔΓs  Γs - ΓB⁰ 

New

B⁰s →J/ψ K˖K˗ 

[LHCB-PAPER-2019-013]

B⁰s →J/ψ π˖π˗ 

arXiv:1903.05530

https://arxiv.org/abs/1903.05530
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𝜙s = −0.040 ± 0.025 [rad] 
|λ| = 0.991 ± 0.010 

ΔΓs = 0.0813 ± 0.0048 [ps-1] 
Γs- ΓB⁰ = −0.0024 ± 0.0018 [ps-1]

Combination of LHCb results

[B⁰s →J/ψ K⁺K⁻ Run 1] [B⁰s →J/ψ π⁺π⁻ Run 1]

B⁰s →J/ψ K˖K˗ 

[LHCB-PAPER-2019-013]

B⁰s →J/ψ π˖π˗ 

arXiv:1903.05530

+ +

[B⁰s →ψ(2S) 𝜑 ]
+

[B⁰s → Ds Ds ]

[B⁰s →J/ψ K⁺K⁻ High mass Run 1]
+

++

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.041801
https://www.sciencedirect.com/science/article/pii/S0370269314004845?via=ihub
https://arxiv.org/abs/1903.05530
https://www.sciencedirect.com/science/article/pii/S0370269316305226?via=ihub
http://inspirehep.net/record/1317237
https://link.springer.com/article/10.1007/JHEP08(2017)037
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𝜙s 0.1σ away from SM 
consistent with Standard Model 

𝜙s 1.6σ away from 0  
consistent with no CPV in interference  
between direct decay and after mixing 

|λ| consistent with 1 
consistent with no direct CPV 

Γs/ΓB⁰  consistent with HQE prediction

Conclusions

B⁰s →J/ψ K˖K˗ 

[LHCB-PAPER-2019-013]

B⁰s →J/ψ π˖π˗ 

arXiv:1903.05530

𝜙s = −0.040 ± 0.025 [rad] 
|λ| = 0.991 ± 0.010 

ΔΓs = 0.0813 ± 0.0048 [ps-1] 
Γs- ΓB⁰ = −0.0024 ± 0.0018 [ps-1]

https://arxiv.org/abs/1903.05530
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Fit result B⁰s →J/ψ K˖K˗
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Systematics for B⁰s →J/ψ K˖K˗
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Fit result B⁰s →J/ψ π˖π˗
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Systematics for B⁰s →J/ψ π˖π˗
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Decay time acceptance

Decay time acceptance is approximately: 

Given a parameterisation of Γd around  
the used value Γd0 = 1/1.520ps-1



 32Katya Govorkova

Details on the B⁰s →J/ψ K˖K˗ mass model 

86th LHCb Week                                                             5 December 2017

Signal model: Double-sided Crystal Ball function (CB2) with per-event mass error 
used as conditional observable  
Quadratic dependence on the per-event mass error: σ = s1σi + s2σi2 (s1~0.8; s2~0.05) 

- Tails of the CB2 are fixed from the fit to MC 
- Fit in 6 m(K˖K˗) bins [990, 1008, 1016, 1020, 1024, 1032, 1050] MeV/c2 

Background: Exponential for the combinatorial and gaussian for  
the B⁰ →J/ψ K˖K˗ contribution

Run 1 
|cos(θµ)|<0.25

Run 1 
|cos(θµ)|>0.7

Run 1 
0.25<|cos(θµ)|<0.7

Why? To take into account this correlation. Mass resolution 
comes from the angles between muons, therefore per-candidate 

mass error and cos(θµ) are highly correlated



 33Katya Govorkova

Flavour tagging
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Flavour tagging
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Flavour tagging calibration

OS tagger calibrated using B+ →J/ψ K+ decays SSK tagger calibrated using B⁰s → D-s π+ decays 

Moriond EW 2019                                                                  21 March 2019

Two tagging algorithms are used: opposite side and same side 
For each algorithm true mistag probability is calibrated assuming 

linear dependency with estimated one 

LHCb Preliminary LHCb Preliminary
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PDF for data fit
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PDF for data fit
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Decay time efficiency B⁰s →J/ψ K˖K˗

Moriond EW 2019                                                                  21 March 2019

LHCb Preliminary LHCb Preliminary

LHCb PreliminaryLHCb Preliminary



 39Katya Govorkova

Future
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 Comparison of φs sensitivity from different decay modes
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