A new test of gravitational redshift using eccentric Galileo satellites

P. Delva¹, N. Puchades², E. Schönemann³, F. Dilssner³, C. Courde⁴, S. Bertone⁵, F. Gonzalez⁶, A. Hees¹, Ch. Le Poncin-Lafitte¹, F. Meynadier¹, R. Prieto-Cerdeira⁶, B. Sohet¹, J. Ventura-Traveset⁷, and P. Wolf¹

¹SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, 61 avenue de l’Observatoire 75014 Paris France
²Departamento de Astronomía y Astrofísica - Valencia University
³European Space Operations Center, ESA/ESOC, Darmstadt Germany
⁴UMR Geoazur, Université de Nice, Observatoire de la Côte d’Azur, 250 rue A. Einstein, F-06560 Valbonne, France
⁵Astronomical Institute, University of Bern, Sidlerstrasse 5 CH-3012 Bern, Switzerland
⁶European Space and Technology Centre, ESA/ESTEC, Noordwijk, The Netherlands and
⁷European Space and Astronomy Center, ESA/ESAC, Villanueva de la Cañada, Spain

Rencontres de Moriond 2019: Gravitation
La Thuile, Italy, March 23–30 2019
General Relativity is based on 2 fundamental principles:

- the Einstein Equivalence Principle (EEP)
- the Einstein field equations

Following Will (1993), EEP can be divided into three *sub-principles*

- **WEP/UFF**: If any uncharged test body is placed at an initial event in space-time and given an initial velocity there, then its subsequent trajectory will be independent of its internal structure and composition.
- **LPI**: The outcome of any local non-gravitational test experiment is independent of *where and when* in the universe it is performed.
- **LLI**: The outcome of any local non-gravitational test experiment is independent of the velocity of the (freely falling) apparatus.
Einstein Equivalence Principle (EEP)

General Relativity is based on 2 fundamental principles:

- the Einstein Equivalence Principle (EEP)
- the Einstein field equations

Following Will (1993), EEP can be divided into three *sub-principles*

- **WEP/UFF:** If any uncharged test body is placed at an initial event in space-time and given an initial velocity there, then its subsequent trajectory will be independent of its internal structure and composition.

- **LPI:** The outcome of any local non-gravitational test experiment is independent of *where and when* in the universe it is performed.

- **LLI:** The outcome of any local non-gravitational test experiment is independent of the *velocity* of the (freely falling) apparatus.
Tests of the EEP with atomic clocks

- Tests of **Lorentz Invariance** using comparisons of
 - atomic clocks onboard **GPS satellites w.r.t. ground clocks** (Wolf and Petit 1997)
 - **optical clocks** linked with optical fibres (Delva, Lodewyck, et al. 2017)
- Test of **Lorentz Invariance in the Matter Sector** (Wolf, Chapelet, et al. 2006; Hohensee et al. 2011; Pihan-Le Bars et al. 2017; Sanner et al. 2019)
- Transients (Derevianko and Pospelov 2014; Wcislo et al. 2016; Roberts et al. 2017; Wcislo et al. 2018)

Test of **Lorentz Invariance with a clock redshift experiment** (Vessot 1989)
Tests of the EEP with atomic clocks

- Tests of **Lorentz Invariance** using comparisons of
 - atomic clocks onboard **GPS satellites** w.r.t. ground clocks \cite{Wolf_and_Petit_1997}
 - **optical clocks** linked with optical fibres \cite{Delva_Lodewyck_2017}

- **Test of Lorentz Invariance in the Matter Sector** \cite{Wolf_Chapelet_2006,Hohensee_2011,Pihan-Le_Bars_2017,Sanner_2019}

- Test of **LPI** searching for variations in the constants of Nature
 - harmonic temporal variation \cite{Van_Tilburg_2015,Hees_2016}
 - spatial variation w.r.t. the Sun gravitational potential \cite{Ashby_2007,Guena_2012,Leefer_2013,Peil_2013}
 - **Transients** \cite{Derevianko_Pospelov_2014,Wcislo_2016,Roberts_2017,Wcislo_2018}
Tests of the EEP with atomic clocks

- Tests of Lorentz Invariance using comparisons of
 - atomic clocks onboard GPS satellites w.r.t. ground clocks (Wolf and Petit 1997)
 - optical clocks linked with optical fibres (Delva, Lodewyck, et al. 2017)
- Test of LPI searching for variations in the constants of Nature
 - linear temporal drift (Rosenband et al. 2008; Guéna et al. 2012; Leefer et al. 2013; Godun et al. 2014; Huntemann et al. 2014)
 - harmonic temporal variation (Van Tilburg et al. 2015; Hees et al. 2016)
 - spatial variation w.r.t. the Sun gravitational potential (Ashby et al. 2007; Guéna et al. 2012; Leefer et al. 2013; Peil et al. 2013)
 - Transients (Derevianko and Pospelov 2014; Wcisło et al. 2016; Roberts et al. 2017; Wcisło et al. 2018)
- Test of LPI with a clock redshift experiment (Vessot 1989)
Tests of the EEP with atomic clocks

- Tests of Lorentz Invariance using comparisons of
 - atomic clocks onboard GPS satellites w.r.t. ground clocks (Wolf and Petit 1997)
 - optical clocks linked with optical fibres (Delva, Lodewyck, et al. 2017)
- Test of LPI searching for variations in the constants of Nature
 - linear temporal drift (Rosenband et al. 2008; Guéna et al. 2012; Leefer et al. 2013; Godun et al. 2014; Huntemann et al. 2014)
 - harmonic temporal variation (Van Tilburg et al. 2015; Hees et al. 2016)
 - spatial variation w.r.t. the Sun gravitational potential (Ashby et al. 2007; Guéna et al. 2012; Leefer et al. 2013; Peil et al. 2013)
 - Transients (Derevianko and Pospelov 2014; Wcisło et al. 2016; Roberts et al. 2017; Wcisło et al. 2018)
- Test of LPI with a clock redshift experiment (Vessot 1989)
Gravity Probe A (GP-A) (1976)

- Test of LPI with a clock redshift test (Vessot and Levine 1979; Vessot, Levine, et al. 1980; Vessot 1989)
- Continuous two-way microwave link between a spaceborne hydrogen maser clock and ground hydrogen masers
- One parabola of the rocket $\lesssim 2$ hours of data
- Frequency shift verified to 7×10^{-5}
- Gravitational redshift verified to 1.4×10^{-4}
Tests of Local Position Invariance

(Will 2014)

- Null tests: 2 different co-located clocks in the Sun potential
Tests of Local Position Invariance

- Null tests: 2 different co-located clocks in the Sun potential
- New test: Galileo eccentric satellites (Delva, Puchades, et al. 2018; Herrmann et al. 2018)

\[\Delta v/v = (1 + \alpha) \Delta U/c^2 \]
Tests of Local Position Invariance

H-Maser Gravity Probe A (1976)
Null tests: 2 different co-located clocks in the Sun potential
New test: Galileo eccentric satellites (Delva, Puchades, et al. 2018; Herrmann et al. 2018)

\(\Delta v/v = (1 + \alpha) \Delta U/c^2 \)
The Galileo system

- European Global Navigation Satellite System (GNSS) $(22.2 \times 10^9$ euros in 20 years)
- 24 satellites + 6 spares in medium Earth orbit on three orbital planes [actually 26];
The Galileo system

- European Global Navigation Satellite System (GNSS) (22.2×10^9 euros in 20 years)
- 24 satellites + 6 spares in medium Earth orbit on three orbital planes [actually 26];
- A global network of sensor stations receiving information from the Galileo satellites;
The Galileo system

- European Global Navigation Satellite System (GNSS) (22.2×10^9 euros in 20 years)
- 24 satellites + 6 spares in medium Earth orbit on three orbital planes [actually 26];
- A global network of sensor stations receiving information from the Galileo satellites;
- The control centres computing information and synchronising the time signal of the satellites;
The Galileo system

- European Global Navigation Satellite System (GNSS) (22.2 × 10⁹ euros in 20 years)
- 24 satellites + 6 spares in medium Earth orbit on three orbital planes [actually 26];
- A global network of sensor stations receiving information from the Galileo satellites;
- The control centres computing information and synchronising the time signal of the satellites;
Galileo for science

- ESA: **GNSS Science Support Centre (GSSC: gssc.esa.int)** and **GNSS Science Advisory Committee (GSAC)**
- More than 100 GNSS satellites, with global coverage and continuous measurements: major contributions in **Earth Science**, **Fundamental Physics**, **Metrology** and many other fields
Galileo for science

- ESA: GNSS Science Support Centre (GSSC: gssc.esa.int) and GNSS Science Advisory Committee (GSAC)

- More than 100 GNSS satellites, with global coverage and continuous measurements: major contributions in Earth Science, Fundamental Physics, Metrology and many other fields

- Intermediate batch 2024-2026 (6 sats): experimental instruments onboard (optical ISL, active LRR, accelerometer, VLBI transmitter...) → check H2020 call open until end of April
Galileo for science

- ESA: GNSS Science Support Centre (GSSC: gssc.esa.int) and GNSS Science Advisory Committee (GSAC)

- More than 100 GNSS satellites, with global coverage and continuous measurements: major contributions in Earth Science, Fundamental Physics, Metrology and many other fields

- Intermediate batch 2024-2026 (6 sats): experimental instruments onboard (optical ISL, active LRR, accelerometer, VLBI transmitter...)
 → check H2020 call open until end of April

- 2nd generation 2027-2029 (10 sats)
Galileo for science

- ESA: **GNSS Science Support Centre** (GSSC: gssc.esa.int) and **GNSS Science Advisory Committee** (GSAC)

- More than 100 GNSS satellites, with global coverage and continuous measurements: major contributions in **Earth Science, Fundamental Physics, Metrology** and many other fields

- Intermediate batch 2024-2026 (6 sats): experimental instruments onboard (optical ISL, active LRR, accelerometer, VLBI transmitter...)
 → check H2020 call open until end of April

- 2nd generation 2027-2029 (10 sats)
Galileo satellites 201&202 orbit

Galileo sats 201&202 launched in 08/22/2014 on the wrong orbit due to a technical problem ⇒ GRedshift test (GREAT Study)
Why Galileo 201 & 202 are perfect candidates?

- An elliptic orbit induces a periodic modulation of the clock proper time at orbital frequency

\[\tau(t) = \left(1 - \frac{3Gm}{2ac^2}\right) t - \frac{2\sqrt{Gma}}{c^2} e \sin E(t) + \text{Cste} \]

- Very good stability of the on-board atomic clocks → test of the variation of the redshift
- Satellite life-time → accumulate the relativistic effect on the long term
- Visibility → the satellite are permanently monitored by several ground receivers
Why Galileo 201 & 202 are perfect candidates?

- An elliptic orbit induces a periodic modulation of the clock proper time at orbital frequency

\[\tau(t) = \left(1 - \frac{3Gm}{2ac^2}\right)t - \frac{2\sqrt{Gma}}{c^2}e \sin E(t) + \text{Cste} \]

- Very good stability of the on-board atomic clocks \(\rightarrow\) test of the variation of the redshift

- Satellite life-time \(\rightarrow\) accumulate the relativistic effect on the long term

- Visibility \(\rightarrow\) the satellite are permanently monitored by several ground receivers
Orbit and clock solutions: ESA/ESOC
Transformation of orbits into GCRS with SOFA routines
Theoretical relativistic shift and LPI violation

\[x_{\text{redshift}} = \int \left[1 - \frac{v^2}{2c^2} - \frac{U_E + U_T}{c^2} \right] dt ; \quad x_{\text{LPI}} = -\alpha \int \frac{U_E + U_T}{c^2} dt \]

Peak-to-peak effect
\[\sim 400 \, \text{ns: model and systematic effects at orbital period should be controlled down to 4 ps in order to have} \]
\[\delta \alpha \sim 1 \times 10^{-5} \]
Choice of clock

- GAL-201: only PHM-B (PHM-A is removed) → 359 days of data
- GAL-202: only PHM (RAFS is removed) → 649 days of data
Fit of the LPI violation model with Linear Least Square in a Monte Carlo routine: 1 GR violation parameter (α) + 2 parameters per day fitted (daily clock offset a_i and drift b_i)

$$x = \sum_i f_i(t)(a_i + b_i t) - \alpha \int \frac{U_E + U_T}{c^2} dt$$
Results of MC-LLS

<table>
<thead>
<tr>
<th></th>
<th>LPI violation parameter [×10^{-5}]</th>
<th>Statistical uncertainty (Monte-Carlo) [×10^{-5}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAL-201</td>
<td>−1.12</td>
<td>1.48</td>
</tr>
<tr>
<td>GAL-202</td>
<td>+6.56</td>
<td>1.41</td>
</tr>
</tbody>
</table>

The bias is significant for GAL-202
Systematic errors (Delva, Hees, et al. 2015)

1. Effects acting on the frequency of the reference ground clock → can be safely neglected
2. Effects on the links (mismodeling of atmospheric delays, variations of receiver/antenna delays, multipath effects, etc...) → very likely to be uncorrelated with the looked for signal, averages with the number of ground stations
Systematic errors (Delva, Hees, et al. 2015)

1. Effects acting on the frequency of the reference ground clock → can be safely neglected

2. Effects on the links (mismodeling of atmospheric delays, variations of receiver/antenna delays, multipath effects, etc...) → very likely to be uncorrelated with the looked for signal, averages with the number of ground stations

3. Effects acting directly on the frequency of the space clock (temperature and magnetic field variations on board the Galileo satellites)
Systematic errors (Delva, Hees, et al. 2015)

1. Effects acting on the frequency of the reference ground clock can be safely neglected.

2. Effects on the links (mismodeling of atmospheric delays, variations of receiver/antenna delays, multipath effects, etc...) are very likely to be uncorrelated with the looked for signal, averages with the number of ground stations.

3. Effects acting directly on the frequency of the space clock (temperature and magnetic field variations on board the Galileo satellites).

4. Orbit modelling errors (e.g. mismodeling of Solar Radiation Pressure) are strongly correlated to the clock solution.
1. Effects acting on the **frequency of the reference ground clock** → can be safely neglected

2. Effects on the **links** (mismodeling of atmospheric delays, variations of receiver/antenna delays, multipath effects, etc...) → very likely to be uncorrelated with the looked for signal, averages with the number of ground stations

3. Effects acting directly on the **frequency of the space clock** (temperature and magnetic field variations on board the Galileo satellites)

4. **Orbit modelling errors** (e.g. mismodeling of Solar Radiation Pressure) are strongly correlated to the clock solution

We model systematic effects and fit for each the corresponding LPI violation parameters → conservative approach
1. Effects acting on the frequency of the reference ground clock → can be safely neglected

2. Effects on the links (mismodeling of atmospheric delays, variations of receiver/antenna delays, multipath effects, etc...) → very likely to be uncorrelated with the looked for signal, averages with the number of ground stations

3. Effects acting directly on the frequency of the space clock (temperature and magnetic field variations on board the Galileo satellites)

4. Orbit modelling errors (e.g. mismodeling of Solar Radiation Pressure) are strongly correlated to the clock solution

We model systematic effects and fit for each the corresponding LPI violation parameters → conservative approach
Local systematics: Temperature

Poor access to environmental data, but environmental sensitivity of the PHMs has been characterized on the ground (see e.g. Rochat et al. 2012)

Temperature systematics

- Temperature sensitivity is assumed $< 2 \times 10^{-14} \text{ / K (rel.freq.)}$
- Temperature systematics is supposed to be maximum when the Sun is in the $\pm z$ direction, and minimum when the Sun is in the $+x_{\text{IGS}}$ direction

from Montenbruck et al. 2015

ESA document
Local systematics: Magnetic Field

Magnetic Field systematics

- Magnetic Field along sat. trajectory calculated with International Geomagnetic Reference Field (IGRF) model
- Projection of Magnetic Field into the sat. local frame
- Magnetic Field sensitivity is assumed $< 3 \times 10^{-13} / G$ (rel.freq.) along each local frame axis

from Montenbruck et al. 2015
Orbit systematics

Fit the LPI violation model on Satellite Laser Ranging (SLR) residuals

- Orbital errors are dominated by Solar Radiation Pressure mismodelling
- 1 year SLR Campaign thanks to International Laser Ranging Service

SLR residuals give the range error \Rightarrow clock error in a 1-way time transfer
Local Position Invariance is confirmed down to 2.5×10^{-5} uncertainty, more than 5 times improvements with respect to Gravity Probe A measurement.

The test is now limited by the clock magnetic field sensitivity (along the z axis), which effect is highly correlated to the LPI violation.
Galileo final result

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GAL-201</td>
<td>−0.77</td>
<td>2.73</td>
<td>1.48</td>
<td>1.09</td>
<td>0.59</td>
<td>1.93</td>
</tr>
<tr>
<td>GAL-202</td>
<td>6.75</td>
<td>5.62</td>
<td>1.41</td>
<td>5.09</td>
<td>0.13</td>
<td>1.92</td>
</tr>
<tr>
<td>Combined</td>
<td>0.19</td>
<td>2.48</td>
<td>1.32</td>
<td>0.70</td>
<td>0.55</td>
<td>1.91</td>
</tr>
</tbody>
</table>

- **Local Position Invariance is confirmed down to** 2.5×10^{-5} **uncertainty, more than 5 times improvements with respect to Gravity Probe A measurement**
- **The test is now limited by the clock magnetic field sensitivity** (along the z axis), which effect is highly correlated to the LPI violation
- **PRL cover:** Delva et al. PRL 121.23 (2018) and Herrmann et al., PRL 121.23 (2018)
Galileo final result

<table>
<thead>
<tr>
<th></th>
<th>LPI violat $[\times 10^{-5}]$</th>
<th>Tot unc $[\times 10^{-5}]$</th>
<th>Stat unc $[\times 10^{-5}]$</th>
<th>Orbit unc $[\times 10^{-5}]$</th>
<th>Temp unc $[\times 10^{-5}]$</th>
<th>MF unc $[\times 10^{-5}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAL-201</td>
<td>-0.77</td>
<td>2.73</td>
<td>1.48</td>
<td>1.09</td>
<td>0.59</td>
<td>1.93</td>
</tr>
<tr>
<td>GAL-202</td>
<td>6.75</td>
<td>5.62</td>
<td>1.41</td>
<td>5.09</td>
<td>0.13</td>
<td>1.92</td>
</tr>
<tr>
<td>Combined</td>
<td>0.19</td>
<td>2.48</td>
<td>1.32</td>
<td>0.70</td>
<td>0.55</td>
<td>1.91</td>
</tr>
</tbody>
</table>

- Local Position Invariance is confirmed down to 2.5×10^{-5} uncertainty, more than 5 times improvements with respect to Gravity Probe A measurement.
- The test is now limited by the clock magnetic field sensitivity (along the z axis), which effect is highly correlated to the LPI violation.
- PRL cover: Delva et al. PRL 121.23 (2018) and Herrmann et al., PRL 121.23 (2018).
- Nice outreach video by Derek Muller on Veritasium (youtube channel).
Galileo final result

<table>
<thead>
<tr>
<th></th>
<th>LPI violat $[\times 10^{-5}]$</th>
<th>Tot unc $[\times 10^{-5}]$</th>
<th>Stat unc $[\times 10^{-5}]$</th>
<th>Orbit unc $[\times 10^{-5}]$</th>
<th>Temp unc $[\times 10^{-5}]$</th>
<th>MF unc $[\times 10^{-5}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAL-201</td>
<td>−0.77</td>
<td>2.73</td>
<td>1.48</td>
<td>1.09</td>
<td>0.59</td>
<td>1.93</td>
</tr>
<tr>
<td>GAL-202</td>
<td>6.75</td>
<td>5.62</td>
<td>1.41</td>
<td>5.09</td>
<td>0.13</td>
<td>1.92</td>
</tr>
<tr>
<td>Combined</td>
<td>0.19</td>
<td>2.48</td>
<td>1.32</td>
<td>0.70</td>
<td>0.55</td>
<td>1.91</td>
</tr>
</tbody>
</table>

- **Local Position Invariance** is confirmed down to 2.5×10^{-5} uncertainty, more than 5 times improvements with respect to Gravity Probe A measurement.
- The test is now limited by the clock magnetic field sensitivity (along the z axis), which effect is highly correlated to the LPI violation.
- **PRL cover**: Delva et al. *PRL 121.23 (2018)* and Herrmann et al., *PRL 121.23 (2018)*
- Nice outreach video by Derek Muller on *Veritasium* (youtube channel)