Einstein Equivalence Principle test
with RadioAstron: preliminary results

Dmitry Litvinov (ASC & SAI)

for the RadioAstron gravitational redshift experiment team:

U. Bach, N. Bartel, O. Bayandina, A. Belonenko, K. Belousov, M. Bietenholz, A. Biriukov, G. Cimò,
C. Courde, D. Dirkx, D. Duev, A. Filetkin, G. Granato, L. Gurvits, A. Gusev, R. Haas,
G. Herold, G. Ilin, A. Kahlon, B. Kanevsky, V. Kauts, G. Kopelyansky, A. Kovalenko, G. Kronschnabl,
V. Kulagin, M. Lindqvist, J.E.J. Lovell, H. Mariey, J. McCallum, G. Molera Calvés, C. Moore, K. Moore,
A. Neidhardt, N. Nunes, S. Pilipenko, C. Plötz, S. Pogrebenko, N. Porayko, J. Quick, V. Rudenko, S. Sazankov,
A. Smirnov, V. Soglasnov, K. Sokolovsky, V. Stepanyants, P. de Vicente, J. Yang, M. Zakhvatkin et al.

Rencontres de Moriond – La Thuile, 23-30 March 2019
Introduction
RadioAstron:
- Launched in 2011
- Proposal-driven space-VLBI observatory
- 10 m dish in space
- 1.35; 6; 18; 92 cm wavelengths
- tracking stations: Russia & US
Litvinov: EEP test with RadioAstron

RadioAstron:
- Launched in 2011
- Proposal-driven space-VLBI observatory
 - 10 m dish in space
 - 1.35; 6; 18; 92 cm wavelengths
- tracking stations: Russia & US

Important for the gravitational redshift experiment:
- on-board hydrogen maser
- highly eccentric 9 day orbit
Important for the gravitational redshift experiment:

- on-board hydrogen maser
- highly eccentric 9 day orbit

Record angular resolution in astronomy: 8 μas
RadioAstron:
- Launched in 2011
- Proposal-driven space-VLBI observatory
- 10 m dish in space
- 1.35; 6; 18; 92 cm wavelengths
- Tracking stations: Russia & US

Important for the gravitational redshift experiment:
- On-board hydrogen maser
- Highly eccentric 9 day orbit

Record angular resolution in astronomy: 8 μas

T&C link not working from Jan 2019. Small but non-zero hope for revival. Science equipment ok
EEP holds:

\[\frac{\Delta f_{\text{grav}}}{f} = \frac{\Delta U}{c^2} \]
EEP holds:
\[\frac{\Delta f_{\text{grav}}}{f} = \frac{\Delta U}{c^2} \]

EEP broken (LPI violation):
\[\frac{\Delta f_{\text{grav}}}{f} = \frac{\Delta U}{c^2} (1 + \varepsilon) \]
Grav. redshift modulation:

\[\frac{\Delta f_{\text{grav}}}{f} = 0.4 \cdot 10^{-10} - 5.8 \cdot 10^{-10} \]

RadioAstron compared to GP-A and Galileo:
- more stable H-maser
- greater redshift modulation
- multiple measurements (vs. GP-A)

Estimated accuracy: \(\delta \varepsilon = (1-2) \times 10^{-5} \)
One-way approach to measuring redshift

Fractional frequency shift of the spacecraft downlink:

\[\frac{\Delta f}{f} = -\frac{\dot{D}}{c} - \frac{v_s^2 - v_e^2}{2c^2} + \frac{\left(\vec{v}_s \cdot \vec{n}\right)^2 - \left(\vec{v}_e \cdot \vec{n}\right) \cdot \left(\vec{v}_s \cdot \vec{n}\right)}{c^2} \]

\[+ \frac{\Delta U}{c^2} + \frac{\Delta f_{trop}}{f} + \frac{\Delta f_{ion}}{f} + \frac{\Delta f_{instr}}{f} + O\left(\frac{v}{c}\right)^3 \]

Pro: 6 years of radio science data

Con: orbit reconstruction accuracy

Accuracy of \(\dot{D} \sim 0.5 \text{ mm/s} \) → \(\delta \varepsilon \sim 2 \times 10^{-3} \)
One-way data analysis results

\[\varepsilon = (-3.0 \pm 0.2) \times 10^{-2} \]

Systematics partially understood
Data processing

Dedicated experiments: as in GP-A, compensate for 1st-order Doppler and troposphere using a 2-way link

\[
\Delta f_{1w} - \frac{1}{2} \Delta f_{2w} = \Delta f_{\text{grav}} + \Delta f_0 + f_0 \left(\frac{|v_s^2 - v_e^2|}{2c^2} + \frac{a_e \cdot n}{c} \Delta t \right) + \Delta f_{\text{ion}}^{(\text{res})} + \Delta f_{\text{fine}} + O(v/c)^4
\]

- measured
- to be determined
- computed from orbit, models, aux. data
- determined

Fine effects: \(O(v/c)^3\), environmental sensitivities etc.

Final step – regression analysis:

\[
\frac{\Delta f_{\text{grav}}}{f} = \frac{\Delta U}{c^2} (1 + \varepsilon)
\]

Data: Gb, Ef, Hh, On, Sv, VLBA, Wn, Wz, Yg, Ys, Zc + tracking stations
\[\frac{\delta f}{f} = \frac{\Delta f_{\text{grav}}}{f} - \frac{\Delta U}{c^2} = \varepsilon \frac{\Delta U}{c^2} \]

\[\varepsilon = (0.3 \pm 1.7) \times 10^{-4} \]
Experiment: raks17aw/ay/az/ba (29-30 September 2016)

Effect magnitude, $\Delta f/f$

- gravitation
- $(v/c)^2$
- $(v/c)^3$
- magn. field
- troposphere
- ionosphere
- geocent. dist.

Observation

NB: abs. values plotted
Velocity accuracy problem:
orbit determined from all data: 3-5 mm/s
orbit determined from all data excluding one-way doppler: 15-50 mm/s

gives error up to 5×10^{-15} in $O(v/c)^2$ terms

Is it a problem that orbit determined using one-way doppler assumes $\epsilon = 0$? Perform covariance analysis.
Systematic errors: covariance analysis

Covariance matrix based on analysis of March 2017 data

Over 800 parameters solved for, including the EEP violation parameter

(Others: spacecraft state vector, SRP coefficients, reaction wheel unloading, etc.)
Systematic errors: covariance analysis

Over 800 parameters solved for, including the EEP violation parameter

(Others: spacecraft state vector, SRP coefficients, reaction wheel unloading, etc.)

Let’s zoom into this area
Systematic errors: covariance analysis

- Momentum perturbations due to desaturation of reaction wheels
- Ground station position & velocity
- Solar radiation pressure coefficients
- Space H-maser frequency biases (piecewise)
- EEP violation parameter \(\varepsilon \)
- Unmodelled accelerations

Good: \(\varepsilon \) is not correlated with the spacecraft state vector

Bad: it is strongly correlated with the H-maser frequency biases (used in the analysis)
Lessons from the covariance analysis:

1. EEP violation parameter ε is correlated only with H-maser frequency biases (piece-wise and independent).
Lessons from the covariance analysis:

1. EEP violation parameter ε is correlated only with H-maser frequency biases (piece-wise and independent).

2. Need to upgrade the H-maser clock model: independent biases \rightarrow bias + drift (global fit)
Systematic errors: covariance analysis

Lessons from the covariance analysis:

1. EEP violation parameter ε is correlated only with H-maser frequency biases (piece-wise and independent).

2. Need to upgrade the H-maser clock model: independent biases \rightarrow bias + drift (global fit)

3. Uncertainties in other parameters are harmless, e.g. tracking station position error up to 1 m is ok.
Generalize the redshift violation model:

1. Redshift violation parameter ε may depend on clock type and element composition of the gravitational field source (null tests)

2. EEP violation due to other bodies is 1st order in respective ΔU’s (Wolf & Blanchet, 2016)
Generalize the redshift violation model:

1. Redshift violation parameter ε may depend on clock type and element composition of the gravitational field source (null tests)

2. EEP violation due to other bodies is 1st order in respective ΔU’s (Wolf & Blanchet, 2016)

\[
\frac{\Delta f_{\text{grav}}}{f} = \frac{\Delta U_E}{c^2} (1 + \varepsilon_E)
\]

\[
\frac{\Delta f_{\text{grav}}}{f} = \frac{\Delta U_E}{c^2} + \frac{\varepsilon_E \Delta U_E + \varepsilon_S \Delta U_S + \varepsilon_M \Delta U_M + \ldots}{c^2}
\]

E – Earth
S – Sun
M – Moon
Accuracy of measuring ε_E with RadioAstron – simulations

Generalizing the redshift violation model

![Graph showing the accuracy of measuring ε_E over time with RadioAstron simulations. The graph plots the 1σ-error of ε_E against time (in days from 1 Jan 2012). Four cases are shown: Ignore Sun, $\varepsilon_S = \varepsilon_E$, $\varepsilon_S \neq \varepsilon_E$, and $\varepsilon_S \neq \varepsilon_E \neq \varepsilon_M$. The graph demonstrates a significant decrease in error over time, with the 1 orbit marker indicating a point of interest.]
Generalizing the redshift violation model

Accuracy of measuring ε_E with RadioAstron – simulations

Little change for accuracy of ε_E when adding Sun and Moon violations
Summary

1. Data collection finished, analysis in progress

2. One-way data analysis: accuracy of $\sim 10^{-3}$ as expected, systematics

3. Accuracy of $\sim 10^{-4}$ achieved in a single experiment
 (GP-A: 1.4×10^{-4}, Galileo: 2.48×10^{-5}, 3.1×10^{-5})

4. Work in progress: H-maser clock model

5. Now taking into account the possibility of Sun and Moon redshift violation
Thank you!