Latest Results from K2K
Atsuko K. Ichikawa
(Kyoto University)
For K2K collaboration

1. Introduction
2. Neutrino Beam Line
3. Near and Far Detectors
4. Extrapolation from Near to Far sites
5. Result
6. Upgrade
7. Conclusion & Future prospect
1. Introduction

K2K is the first long baseline (250 km) neutrino experiment to investigate the neutrino oscillation observed in atmospheric neutrinos by the Super-K [PRL81, 1562(1998)].

Search for ν_μ disappearance and ν_e appearance

$P(\nu_\mu \to \nu_\mu) = 1 - \sin^2 2\theta \sin^2(1.27 \Delta m^2 L/E)$

Diagram:
- Pure ν_μ beam (99%)
- $<E_{\nu}> \sim 1.3 GeV$
- 50 kton Water Cherenkov detector
- 12GeV PS
 - ν_μ beam
 - Beam monitor
 - Near detector
2. Neutrino Beam Line

\[p + \text{Al} \rightarrow \pi^+ \rightarrow \mu^+ + \nu_\mu \ (\langle E_{\nu} \rangle = 1.3 \text{ GeV} \ll \tau \text{ threshold}) \]

- 1.1 \(\mu\)sec spill/2.2 sec
- \(6 \times 10^{12}\) protons on target (POT)/spill
- GPS alignment < 0.01 mrad.
- Civil construction < 0.1 mrad.
ν target (Al) and Two HORNS
Muon monitor

Behind beam dump

Monitor the profile center of muons spill by spill.

Silicon Pad Detector Array

Segmented Ionization chamber

μ-pit floor
Delivered Protons on Target (POT)

Accumulated POT (10^{18})

Protons/Pulse (10^{12})

Date

1999 2000 2001

5.6 x 10^{19} POT
(July 12, 2001)

4.8 x 10^{19} POT for Analysis
3. Near and Far Detectors

At KEK:

1kt: Same Type Detector as SK Neutrino Flux Measurement at Near
MRD: Muon range detector Neutrino Beam Monitor
SciFi+MRD: Fine Grained Precise Neutrino Interaction Study
Neutrino Energy reconstruction
(assuming Quasi-Elastic (QE) interaction)

$\nu_\mu + n \rightarrow \mu + p$

ν_μ

θ

(E_μ, p_μ)

$E_v = \frac{m_N E_\mu - m_\mu^2/2}{m_N - E_\mu + p_\mu \cos \theta_\mu}$

Non Quasi-Elastic event gives lower E_v
1kt Water Cherenkov detector

Same Type Detector as SK Neutrino Flux Measurement at Near

of photo-electrons

Analysis threshold

- data
- MC
μ momentum (MeV/c)

θ_μ (degree)

Reconstructed ν Energy for 1-ring FC μ

DATA
MC
non–QE (MC)

w/o acceptance correction

QE events
SciFi events
Fine Grained Precise Neutrino Interaction Study

Water(+20%Al) target

Two track events to select QE events.
Can study non-QE background events.
MRD (Muon Range Detector)

Muon range detector Neutrino Beam Monitor
Fe/drift-tube sandwitch

Profile x (0.5GeV < \(E_\mu \) < 1.0GeV)

Profile x (1.0GeV < \(E_\mu \) < 2.5GeV)
Far detector: Super-K

- Inner detector
- 11146 of 20” PMT
- 50kt water
- 41.4m
- 39.3m

Location:
- Ikeno-yama, Kamioka, Gifu
- Mozumi
- 1km (2700mwe)
- 3km
- 2km
- Atotsu

Dimensions:
- 3km
- 2km
- 1km (2700mwe)
K2K Events at Super-K
4. Extrapolation from Near to Far sites

How we extrapolate the measurement at the near site to that at the far site?
Pion Monitor

Gas Cherenkov detector: (insensitive to primary protons)
Measure momentum and angular distribution of pions, \(N(p_\pi, \theta_\pi) \) just after the horns.

\[
N_{\text{expected}} = N_{\text{measurement}} \times R(\text{Far} / \text{Near})
\]

\[
R = \frac{\int \Phi_{\text{SK}}(E_\nu) \sigma(E_\nu) dE_\nu}{\int \Phi_{\text{KEK}}(E_\nu) \sigma(E_\nu) dE_\nu} \cdot \frac{N^\text{Mass}_{\text{SK}}}{N^\text{Mass}_{\text{KEK}}}
\]

Graphs and Figures:

- **Top view** of the Pion Monitor.
- **Beam view** showing the decay volume and detectors.
- Far/Near flux ratio plot with data points and fitted curve.
- Integrated flux above 2.5 GeV.

Notes:

- PIMON data analysis.
- Simulation.

Values:

- Far/Near flux ratio: \(1.0 \times 10^{-6} \)
Super-K Event selection

\[-0.2 \leq \Delta T \equiv T_{SK} - T_{spill} - \text{TOF} \leq 1.3 \mu\text{sec}\]

- No Decay-e HE Trig.
- FCFV

FC: fully contained
(No activity in Outer Detector)
(Both start & stop point in Inner Detector.)

FV: 22.5kt Fiducial Volume

\[0 \pm 5\mu\text{sec}\]

Expected Atm. ν BG <10^{-3}
within 1.5μs.

\[T_{spill}: \text{Abs. time of spill start}\]
\[T_{SK}: \text{Abs. time of SK event}\]
\[\text{TOF: 0.83ms (KEK to Kamioka)}\]
Results

<table>
<thead>
<tr>
<th>Event Category</th>
<th>Observed</th>
<th>Expected</th>
<th>$\Delta m^2 = 3 \times 10^{-3}$ eV2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Ring μ-like</td>
<td>30</td>
<td>44.0 ± 6.8</td>
<td>24.4</td>
</tr>
<tr>
<td>Single Ring e-like</td>
<td>2</td>
<td>4.4 ± 1.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Multi Ring</td>
<td>24</td>
<td>32.2 ± 5.3</td>
<td>24.3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>56</td>
<td>80.6 ± 7.3</td>
<td>52.4</td>
</tr>
</tbody>
</table>

$\sin^2 2\theta = 1.0$

Dominant Systematic Errors are an uncertainty of far-near ratio ($\sim 7\%$) and an uncertainty of 1kt fiducial volume ($\sim 4\%$).

The provability of null oscillation scenario is **only 3\%**. (It was 10\% in the last year.)
Gaussian tail hypothesis test

Contour definitions:
- 68%
- 90%
- 99%

Disfavored at 90% CL.

Reconstructed E_ν

E_ν F.C. 22.5kt 1-ring μ-like

Note:
$\Delta m^2 = 3 \times 10^{-3} \text{ eV}^2$

\square 600 MeV E_ν

Preliminary
K2K Upgrade

- K2K will install another brand new near detector in summer 2003.
 \[L = 250 \text{ km}, \Delta m^2 = 3 \times 10^{-3} \quad E_{\nu} \sim 0.6 \text{GeV} \]

Full Active (solid) Scintillator Tracker

- High efficiency for a short (<4cm) track.
- Detect a proton down to 350 MeV/c.
- PID \((p/\pi)\) and the momentum measurement by \(dE/dx\).
- Fine segments \((1 \sim 2 \sim 300 \text{cm}^3)\).
7. Conclusion & Future Prospect

- K2K accumulate \(4.8 \times 10^{19}\) protons on target.
 Goal = \(1.0 \times 10^{20}\) protons.

- 56 Events are observed with an expectation of \(80^{+6.1}_{-6.6}\) events.
 - The probability of null oscillation is less than 3%.

- We have established the K2K experimental method.
 Spectrum and Flux Extrapolation from Near to Far.
 Synchronization of Far detector with an accelerator by GPS.
 Beam handling towards the detector 250km away

- Just starting the spectrum analysis.

- We hope, K2K will re-start run in 2003.

- New Full Active Scintillator Tracker will be installed in summer 2003 to study neutrino interactions in detail.
Supplement
Accident on Nov. 12

Broken PMTs

Inner : ~60%
Outer: ~50%

Most possible cause
One PMT broken
and chain reaction occurred
by shock waves.

We will rebuild the detector.