5 Years Neutrino Physics with Super-Kamiokande

XXXVII Rencontres de Moriond
March 2002

Michael Smy, UC Irvine
Neutrino Sources and Oscillations

- **Atm. Neutrinos:** (high energy)
 - e- and µ-type
 - Probe oscill. for $\Delta m^2 = 0.001 \text{eV}^2$
 - Varying L (zenith angle) and E
 - Probe matter effects

- **Solar Neutrinos:** (low energy)
 - Only e-type
 - Probe oscill. for $\Delta m^2 = 10^{-11} \text{eV}^2$
 - Varying L (season) and E
 - Probe matter effects (solar zenith angle)

Mixing Matrix:

\[
U = \begin{pmatrix}
 c_{12}c_{13} & s_{12}c_{13} \\
 -s_{12}c_{23} - c_{12}s_{23}s_{13} & c_{12}c_{23} - s_{12}s_{23}s_{13} \\
 s_{12}s_{23} - c_{12}c_{23}s_{13} & c_{12}s_{23} - s_{12}c_{23}s_{13}
\end{pmatrix}
\]

\[
c_{ij} = \cos \theta_{ij} \quad s_{ij} = \sin \theta_{ij}
\]

\[
P_{\text{vac}}(\alpha \rightarrow \beta) = \delta_{\alpha\beta} - 4 \sum_{\substack{j \neq k}} U_{\alpha j} U_{\beta j} U_{\alpha k} U_{\beta k} \sin^2 \left(\frac{\Delta m^2_{jk} L}{4E} \right)
\]

\[
(\Delta m^2_{\text{mat}})^2 = (\Delta m^2)^2 \times \left[\frac{2EV}{\Delta m^2} - \cos(2\theta) \right]^2 + \sin^2(2\theta)
\]

\[
\sin^2(2\theta_{\text{mat}}) = \sin^2(2\theta) \frac{\Delta m^2}{\Delta m^2_{\text{mat}}}
\]

Matter-Effects

Michael Smy, UC Irvine
Super-K Collaboration

Boston University

Brookhaven National Laboratory
M. Goldhaber

University of California, Irvine

California State Univ., Dominguez Hills
K.S. Ganezer, W.E. Keig

George Mason University
J.P. Ellisworth

University of Hawaii
A. Kimayashi, J.G. Leurmed, S. Matsuro, D. Takahashi

Los Alamos National Laboratory
T.J. Haines

Louisiana State University
S. Drazicky, K.B. Lee, R. Svoboda

University of Maryland
E. Blaufuss, J.A. Goodman, G. Guillian, G.W. Sullivan, D. Tutean

University of Minnesota
A. Habig

State University of New York, Stony Brook
J. Hill, C.K. Jung, K. Mettens, M. Malek, C. Mauger, C. McGae, E. Markay
B. Viren, C. Yanagiwa

University of Warsaw
U. Golabowska, D. Kieczewska

University of Washington
S.C. Boyd, J.L. Stuchyra, R.J. Wilkes, K.K. Young

Institute for Cosmic Ray Research, University of Tokyo

National Laboratory for High Energy Physics (KEK)

Bubble Chamber Physics Laboratory, Tohoku University
M. Ebihara, Y. Endo, T. Hasegawa, K. Imaoz, K. Ishihara, T. Maruyama, J. Shirai, A. Suzuki

The University of Tokyo
M. Koshiba

Tokai University
Y. Hatakeyama, Y. Ichikawa, M. Koike, K. Nishijima

Department of Physics, Osaka University
Y. Kajiyama, Y. Nagashima, K. Nitta, M. Taki, M. Yoshida

Niigata University
C. Mizuda, K. Miyama, S. Saji, T. Shibata

Department of Physics, Tokyo Institute of Technology
H. Fajita, S. Ishino, M. Morii, Y. Watanabe

Gifu University
S. Tatsuka

Department of Physics, Kobe University
M. Kobayama, A.T. Suzuki

Department of Physics, Kyoto University
T. Inagaki, T. Naito, K. Nishikawa

Shizuoka Seika College, Shizuoka University
H. Okazawa, T. Ishiiuka

Department of Physics, Seoul National University
H.I. Kim, S.B. Kim, J. Yoo

Michael Smy, UC Irvine
Solar Neutrinos
Experimental Thresholds

Neutrino Spectrum

Recoil Electron Spectrum

Michael Smy, UC Irvine
Standard Solar Model BP2001

Michael Smy, UC Irvine
Super-K Solar Neutrinos

- 1496 Live Days between May 31st, 1996 and July 15th, 2001
- High Statistics
- Measures 8B, limits hep flux
- 8B flux time variations
- Studies energy spectrum
- Some sensitivity to other than e-type neutrinos

Oscillation Signatures

- Suppression of 8B flux
- Appearance of other active flavors (with SNO)
- Spectral Distortion
- Daily variations of 8B flux
- Anomalous yearly variations of 8B flux
Solar Peak above 5 MeV

SK-I 1496day 5.0-20MeV 22.5kt
(Preliminary)
Super-K Solar Neutrino Rate

1496 Day Final Sample:

• 287,000 events
• 22,400 solar neutrino events

Expect:

• 48,200 solar neutrinos (from SSM)
• 16,700 e-type solar neutrinos (from SNO)
• About 5,700 μ/τ-type solar neutrinos

flux is

$2.35 \pm 0.02 \text{(stat.)} \pm 0.08 \text{(sys.)} \times 10^6 / \text{cm}^2 \cdot \text{s}$

or

$0.465 \pm 0.005 \text{(stat.)} ^{+0.016}_{-0.015} \text{(sys.)} \times \text{SSM}$
Time Variation of SK Rate

Time-Dependence of ν Flux

- **New S_{17}**
- **SSM**
- **SK**
- **SNO**

Flux in 10^6/cm2s

Days since Analysis Start

Yearly Variation of SK Rate
Seasonal Dependence of ν Flux

Flux in 10^6/cm2s

Corrected data points

Flux at 1 AU

$\chi^2 = 4.7$ (69% C.L.)

(Flat $\chi^2 = 10.3$ or 17% C.L.)

Michael Smy, UC Irvine
Large Mixing Angle (LMA)

Small Mixing Angle (SMA)

LOW

Vacuum

allowed (Ga, Cl & SNO rates+SSM pred.)

$\nu_e \rightarrow \nu_{\mu/\tau}$ (95% C.L.)
Zenith Angle Spectrum

Tested Oscillation Signatures:

<table>
<thead>
<tr>
<th>Tested Signatures</th>
<th>Verdict</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suppression of 8B flux</td>
<td>✔️</td>
</tr>
<tr>
<td>Appearance of other active flavors (with SNO)</td>
<td>✔️</td>
</tr>
<tr>
<td>Spectral Distortion</td>
<td>✔️</td>
</tr>
<tr>
<td>Daily variation of 8B flux</td>
<td>✔️</td>
</tr>
<tr>
<td>Anomalous yearly variations of 8B flux</td>
<td>✗</td>
</tr>
</tbody>
</table>

Michael Smy, UC Irvine
Zenith Spec: Data & Solutions

- $\tan^2 \theta = 0.26/3.8$
- $\Delta m^2 = 7.85 \times 10^{-4} \text{eV}^2$
- $\tan^2 \theta = 0.0016$
- $\Delta m^2 = 6.9 \times 10^{-6} \text{eV}^2$
- $\tan^2 \theta = 0.34$
- $\Delta m^2 = 2.2 \times 10^{-5} \text{eV}^2$
- $\tan^2 \theta = 0.65$
- $\Delta m^2 = 10^{-7} \text{eV}^2$

Michael Smy, UC Irvine
$\nu_e \rightarrow \nu_\mu$ (95, 68, 99.73% C.L.)

Zenith Spectrum+Rates ($^{8}_B$, hep free)

Δm^2 in eV2

$\tan^2(\theta)$
Zenith Spec. & Rates: Best Fits

- $\tan^2 \theta = 2.1$
 - $\Delta m^2 = 4.57 \times 10^{-10} \text{eV}^2$
- $\tan^2 \theta = 0.00044$
 - $\Delta m^2 = 4.8 \times 10^{-6} \text{eV}^2$
- $\tan^2 \theta = 0.34$
 - $\Delta m^2 = 6 \times 10^{-5} \text{eV}^2$
- $\tan^2 \theta = 0.83$
 - $\Delta m^2 = 5 \times 10^{-8} \text{eV}^2$

Michael Smy, UC Irvine
Best-fit Points

<table>
<thead>
<tr>
<th>Solution</th>
<th>Large Mixing Angle (LMA)</th>
<th>Quasi-Vacuum (Quasi-VAC)</th>
<th>Low Δm^2 (LOW)</th>
<th>Small Mixing Angle (SMA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δm^2</td>
<td>6.0×10^{-5}</td>
<td>4.57×10^{-10}</td>
<td>5.0×10^{-8}</td>
<td>4.8×10^{-6}</td>
</tr>
<tr>
<td>$\tan^2 \theta$</td>
<td>0.35</td>
<td>2.1</td>
<td>0.83</td>
<td>0.00044</td>
</tr>
<tr>
<td>χ^2 (45 dof; p_{χ^2} [%])</td>
<td>43.4 (53.9)</td>
<td>48.5 (33.4)</td>
<td>51.2 (24.3)</td>
<td>54.2 (16.2)</td>
</tr>
<tr>
<td>$\Delta \chi^2$ (2 dof; $p_{\Delta \chi^2}$ [%])</td>
<td>0.0 (100.0)</td>
<td>5.1 (7.9)</td>
<td>7.8 (2.0)</td>
<td>10.8 (0.5)</td>
</tr>
<tr>
<td>$\Delta \chi^2_{SK}$ ($p_{\Delta \chi^2}$ [σ])</td>
<td>3.4 (1.3σ)</td>
<td>3.1 (1.3σ)</td>
<td>3.9 (1.5σ)</td>
<td>5.0 (1.7σ)</td>
</tr>
<tr>
<td>Ga Rate [SNU]</td>
<td>73.2 (−0.3σ)</td>
<td>69.6 (−1.0σ)</td>
<td>68.2 (−1.3σ)</td>
<td>75.1 (+0.1σ)</td>
</tr>
<tr>
<td>Cl Rate [SNU]</td>
<td>2.97 (+1.8σ)</td>
<td>3.18 (+2.8σ)</td>
<td>3.13 (+2.5σ)</td>
<td>2.67 (+0.5σ)</td>
</tr>
<tr>
<td>SK Rate [%SSM]</td>
<td>46.4 (−0.1σ)</td>
<td>44.7 (−1.4σ)</td>
<td>44.9 (−1.2σ)</td>
<td>44.1 (−1.9σ)</td>
</tr>
<tr>
<td>SNO Rate [%SSM]</td>
<td>32.8 (−0.7σ)</td>
<td>37.1 (+0.8σ)</td>
<td>38.5 (+1.3σ)</td>
<td>43.8 (+3.1σ)</td>
</tr>
<tr>
<td>ϕ_{8B} [$10^6/(\text{cm}^2\text{s})$]</td>
<td>5.62 (+0.6σ)</td>
<td>3.71 (−1.7σ)</td>
<td>4.04 (−1.2σ)</td>
<td>2.71 (−2.9σ)</td>
</tr>
<tr>
<td>ϕ_{hep} [$10^3/(\text{cm}^2\text{s})$]</td>
<td>40</td>
<td>0</td>
<td>21</td>
<td>8</td>
</tr>
<tr>
<td>8B Spectrum Shape SK E-scale/resol.</td>
<td>−0.3σ</td>
<td>−0.7σ</td>
<td>−0.1σ</td>
<td>+0.1σ</td>
</tr>
</tbody>
</table>
What does it mean?

- Solar problem is due to neutrino flavor oscillation
- e-type neutrinos oscillate predominantly into μ/τ-type neutrinos, no sterile neutrino needed
- Indications of appearance of μ-type neutrinos
- LMA solution is most likely, but quasi-VAC is still a (remote) possibility
- The mixing is large, but not quite maximal
- The Δm^2 is 3 to 23 times 10^{-5}eV2
Atmospheric Neutrinos
Particle Identification

- **Showering ring (e-like)**
- **Electron or photon (e.g. from π^0)**

- **Non-Showering ring (μ-like)**
- **Sometimes decay electron**

Michael Smy, UC Irvine
Data Samples

- **Fully contained** (FC) events have determined energy and PID: no OD activity allowed
- **Multi-ring** (fully contained) events: μ-like or neutral-current (e.g. π^0s) enhanced (NC)
- **Partially contained** (PC) events are assumed μs, no precise energy: only exiting particles allowed
- **Upward-going muons** (from rock): stopping (lower energy) or through-going (higher energy)
Data and Oscillation Best Fit (ν_μ−ν_τ)
Atmospheric Allowed Region

- Disappearance of \(\mu \)-type, no appearance of e-type: \(\nu_\mu - \nu_\tau \)
- Uses all Super-K data sets (1290d) FC, PC, up \(\mu \) and multi-ring
- Very good \(\chi^2 \) (175.0/190)
- Maximal mixing

Michael Smy, UC Irvine
Nature of atmospheric Oscillation

<table>
<thead>
<tr>
<th>Mode</th>
<th>Best fit</th>
<th>$\Delta\chi^2$</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu_\mu - \nu_\tau$</td>
<td>$\sin^2 2\theta = 1.00; \Delta m^2 = 2.5 \times 10^{-3} \text{eV}^2$</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>$\nu_\mu - \nu_e$</td>
<td>$\sin^2 2\theta = 0.97; \Delta m^2 = 5.0 \times 10^{-3} \text{eV}^2$</td>
<td>79.3</td>
<td>8.9</td>
</tr>
<tr>
<td>$\nu_\mu - \nu_s$</td>
<td>$\sin^2 2\theta = 0.96; \Delta m^2 = 3.6 \times 10^{-3} \text{eV}^2$</td>
<td>19.0</td>
<td>4.4</td>
</tr>
<tr>
<td>LxE</td>
<td>$\sin^2 2\theta = 0.90; \alpha = 5.3 \times 10^{-4}$</td>
<td>67.1</td>
<td>8.2</td>
</tr>
<tr>
<td>ν_μ Decay</td>
<td>$\cos^2 \theta = 0.47; \alpha = 3.0 \times 10^{-3} \text{eV}^2$</td>
<td>81.1</td>
<td>9.0</td>
</tr>
<tr>
<td>ν_μ Decay to ν_s</td>
<td>$\cos^2 \theta = 0.33; \alpha = 1.1 \times 10^{-2} \text{eV}^2$</td>
<td>14.1</td>
<td>3.8</td>
</tr>
</tbody>
</table>
• Maximal mixing in the dominant mode ($\nu_\mu - \nu_\tau$)
• Zero mixing in the subdominant mode ($\nu_\mu - \nu_e$)
• About 30 to 40% e-type fraction (90% C.L.) allowed
Limits on θ_{13}

- CHOOZ limit by far the best
- SK allowed area contributes in low Δm^2 region
- Favor for $\nu_\mu - \nu_\tau$, disfavor $\nu_\mu - \nu_e$
- No hint for electron appearance
Oscillation Best Fit ($\nu_\mu - \nu_{\text{sterile}}$)
Limit on Sterile Content

• Mass Hierarchy:
 \(\Delta m^2_{34} = 1 \text{eV}^2, \)
 \(\Delta m^2_{23} = 0.001 \text{eV}^2, \)
 \(\Delta m^2_{12} = 0.0001 \text{eV}^2 \)

• 3 Parameters:
 \(\sin^2 2\theta, \Delta m^2, \sin^2 \xi \) (sterile content)

• \(\sin^2 \xi \) controls size of matter effect

• \(\sin^2 \xi \) controls NC disappearance probability \(P_{NC} \)

\[
P_{NC} = \sin^2 \xi - \sin^2 \xi P_{CC}
\]
Limit on Sterile Content

- Consistent with pure $\nu_\mu - \nu_\tau$
- Sterile Content Limit of 25% (90% C.L.) is based on 2 d.o.f.
- Pure $\nu_\mu - \nu_{\text{sterile}}$ don’t fit well the NC multi-ring and the up-μ samples

Michael Smy, UC Irvine
Limit on Sterile Content

Limit On $\nu_\mu - \nu_s$ Admixture

Best Fit $\chi^2 = 171.6/190$ (P=83%)

$\sin^2 \xi = 0.0$

$\sin^2 2\theta = 1$

$\Delta m^2 = 3.2 \times 10^{-3} \text{ eV}^2$

- Best fit very close to maximal mixing and pure $\nu_\mu - \nu_\tau$

- Consistent Δm^2

Michael Smy, UC Irvine
τ-type Appearance
Three Different Analyses

- Different event reconstruction (energy flow, jet variables), Likelihood-function
- Standard ring reconstruction, Likelihood-function
- Standard ring reconstruction, Neural Net

Michael Smy, UC Irvine
Zenith Angle Plot of enriched Sample

Fit of Zenith Angle Distribution is used to extract the τ signal

Energy flow Analysis

Ring Counting Likelihood

Neural Net
τ-type Appearance Summary

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Number τ-events in fit</th>
<th>Efficiency ε</th>
<th>Significance</th>
<th>Expect significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy-flow Likelihood-function</td>
<td>79^{+44}_{-40} (stat+sys)</td>
<td>32%</td>
<td>1.8σ</td>
<td>1.9σ</td>
</tr>
<tr>
<td>Ring-Counting Likelihood-function</td>
<td>$66^{+41}{-35.3}$ (stat$^{+18}{-18}$) (sys)</td>
<td>43%</td>
<td>1.5σ</td>
<td>2.0σ</td>
</tr>
<tr>
<td>Ring-Counting Neutral Net</td>
<td>$92^{+35.3}{-35.3}$ (stat$^{+18}{-18}$) (sys)</td>
<td>51%</td>
<td>2.2σ</td>
<td>2.0σ</td>
</tr>
</tbody>
</table>

Michael Smy, UC Irvine
What does it mean?

- Atmospheric problem is due to neutrino flavor oscillation
- μ-type neutrinos oscillate predominantly into τ-type neutrinos, no sterile neutrino needed
- A hint of appearance of τ-type neutrinos
- The mixing is large, possibly maximal
- The Δm^2 is a few times 10^{-3}eV^2
- No hint of positive θ_{13}, set limit
What does it all mean?

• Prefer large mixing
• 3 neutrinos are enough: no hint anywhere in SK for sterile neutrinos
• $\Delta m^2_{\text{atm}} = 0.0025 \text{eV}^2$
• $\Delta m^2_{\text{solar}} = 0.00006 \text{eV}^2$
• Mass scheme (right):
 – Assume $m_1 = 0$
 – Assume $\theta_{13} = 0$
 – Neglect CP phase
Super-Kamiokande Accident and Future Plans
Super-K after Collapse
Seismic Recording (2.3 km from SK)

MOZ-V (8418) 01/11/12 0.07 mkine/cm

10 s

Nov. 12
11:01:29

Michael Smy, UC Irvine
Super-K Damage Summary

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damaged PMT’s</td>
<td>6777 (out of 11146 20” tubes)</td>
</tr>
<tr>
<td></td>
<td>1149 (out of 1885 8” tubes)</td>
</tr>
<tr>
<td>Electronics damage</td>
<td>none</td>
</tr>
<tr>
<td>High voltage damage</td>
<td>negligible</td>
</tr>
<tr>
<td>Wavelength shifting plates</td>
<td>700 (out of 1885 damaged)</td>
</tr>
<tr>
<td>Plastic, Tyvek sheeting</td>
<td>Needs total replacement</td>
</tr>
<tr>
<td>Cables</td>
<td>Still undetermined</td>
</tr>
<tr>
<td>Tube frames/housings</td>
<td>Extensive damage</td>
</tr>
<tr>
<td>Small water leak</td>
<td>4.2 tons/hr</td>
</tr>
<tr>
<td>Damage to detector structure</td>
<td>none</td>
</tr>
</tbody>
</table>

Hank Sobel, UC Irvine
First Imploding PMTs

Michael Smy, UC Irvine
Observed pressure pulse at 0.45m from tube center is about **5.6 MPa**. Idealized simulation predicts about **13 MPa**.

Michael Smy, UC Irvine
Rebuilding Super-Kamiokande

- It takes several years to rebuild 20” PMTs
- Take existing 20” PMTs and redo ID with about 50% coverage in one year
- Design PMT enclosures to prevent chain reaction
- Rebuild OD with full coverage in one year
- Rebuild ID with full coverage in 4-5 years
- Old Super-K back in time for JHF turn-on

Michael Smy, UC Irvine
PMT Enclosure Designs

Acrylic (10 mm; front) and Fiberglass (5mm; back) Design

All-Acrylic Design

Michael Smy, UC Irvine
Test at 30m Depth

Hank Sobel, UC Irvine
Super-K Rebuilt Schedule

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PMT Implosion Tests</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Remove ID PMTs SM 11 to 17</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Raise Water to Mid SM 17</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Install OD Floating Floor</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40 Meter Implosion Tests</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Barrel Demolition</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Drain Remaining Water from Tank</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Clean PMT Support Structure</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Remove OD Floating floor</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Bottom Demolition</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Remove Debris from Detector Floor</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Inspect tank Floor for Leaks</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Detector Top Reconstruction</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Barrel Reconstruction</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Install wall Tyvek</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Detector Bottom Reconstruction</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Bottom Tyvek</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Fill detector</td>
<td></td>
</tr>
</tbody>
</table>

Preliminary S-K Reconstruction Schedule

William Kropp, UC Irvine
Real K2K Event

1.3 GeV Single Ring μ

As recorded

50% of PMTs masked

Momentum and angle from beam should be measurable with negligible loss of accuracy

Hank Sobel, UC Irvine
Proton Decay

Proton Decay to $K^+ \nu$: $K^+ \rightarrow \mu \nu$ with prompt tag from $^{16}N^* \rightarrow ^{16}N + \gamma$

8 or more hits in 12 ns sliding window preceding muon (K^+ is below Cherenkov threshold)

M.C. direction of 6 MeV gamma

PMT hits from 6 MeV gamma

Hank Sobel, UC Irvine
Threshold with 50% Coverage

Michael Smy, UC Irvine
Further Impact of SK Solar Data

• Continue to watch the long-term time stability of 8B flux
• Search for anomalous yearly variation to limit quasi-vacuum oscillation possibilities
• Improve high-energy spectrum shape precision to limit quasi-vacuum oscillation possibilities
• Improve day-night asymmetry precision at high energy and limit LMA oscillation possibilities
• Increase precision of high-energy flux (to test if large hep neutrino flux of LMA is really there)
• Increase the solar neutrino μ/τ appearance sample; do spectral analysis (with SNO)

Michael Smy, UC Irvine
Further Impact of SK High-E Data

• Confirm oscillation of \(\mu\)-type into \(\tau\)-type by K2K beam spectrum
• Increase significance of \(\tau\)-type appearance
• Maybe observe oscillation pattern
• Push limits for nucleon decay
• Search for positive \(\theta_{13}\) using JHF beam

Michael Smy, UC Irvine