The Resolution to the Solar Neutrino Problem: Model-Independent Evidence for Neutrino Flavor Change at SNO

Karsten M. Heeger

Lawrence Berkeley National Laboratory
Recent Discoveries in Neutrino Physics

Underground experiments have changed our understanding of neutrinos

- **Neutrinos are not massless** (mass is small: $m_{\nu_e} < 0.0000059 \ m_e$)

- **Evidence for neutrino flavor conversion** $\nu_e \leftrightarrow \nu_\mu \leftrightarrow \nu_\tau$

- **Combination of experimental results show that neutrinos oscillate**

Different experiments detect transformation of neutrino flavors

- **Atmospheric + Solar ν (Super-K)**
- **Solar (SNO)**
- **Accelerator ν (LSND)**
- **Reactor (KamLAND)**
Neutrino Astrophysics

Solar Neutrino Flux Measurements

1960’s
• Ray Davis’ Chlorine detector
• First Solar Model calculations

For 30 years
CC and ES measurements of solar ν

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Year</th>
<th>Detection Reaction</th>
<th>Ratio Exp/BP2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine (127 t)</td>
<td>1970-1995</td>
<td>$^{37}\text{Cl} + \nu_e \rightarrow ^{37}\text{Ar} + e^-$</td>
<td>0.34 ± 0.03</td>
</tr>
<tr>
<td>Kamiokande (680t)</td>
<td>1986-1995</td>
<td>$\nu_x + e^- \rightarrow \nu_x + e^-$</td>
<td>0.54 ± 0.08</td>
</tr>
<tr>
<td>SAGE (23 t)</td>
<td>1990-</td>
<td>$^{71}\text{Ga} + \nu_e \rightarrow ^{71}\text{Ge} + e^-$</td>
<td>0.55 ± 0.05</td>
</tr>
<tr>
<td>Gallex + GNO (12 t)</td>
<td>1991-1995</td>
<td>$^{71}\text{Ga} + \nu_e \rightarrow ^{71}\text{Ge} + e^-$</td>
<td>0.57 ± 0.05</td>
</tr>
<tr>
<td>SuperK (22kt)</td>
<td>1996-</td>
<td>$\nu_x + e^- \rightarrow \nu_x + e^-$</td>
<td>0.45 ± -0.017 -0.015</td>
</tr>
</tbody>
</table>

(CC) $^{37}\text{Cl} + \nu_e \rightarrow ^{37}\text{Ar} + e^-$

(ES) $\nu_x + e^- \rightarrow \nu_x + e^-$

→ Data are incompatible with standard and non-standard solar models
What is the Solution?

• Are experiments in error?
 But all experiments show similar effect.

• Is astrophysics wrong?
 Perhaps, but even with all fluxes as free parameters, cannot reproduce the data.

 Data are incompatible with standard and non-standard solar models!
 KMH, Robertson PRL 77:3270 (1996)

• New neutrino physics such as oscillations?
 Cl-Ar and Ga detectors are only sensitiv to ν_e, it would appear that the flux was low.

→ Need solar model independent measurement.
→ Need experiment that measures ν_e and ν_x separately.
Sudbury Neutrino Observatory

2092 m to Surface (6010 m w.e.)

PMT Support Structure, 17.8 m
9456 20 cm PMTs
~55% coverage within 7 m

Acrylic Vessel, 12 m diameter

1000 Tonnes D$_2$O
1700 Tonnes H$_2$O, Inner Shield
5300 Tonnes H$_2$O, Outer Shield
Urylon Liner and Radon Seal
The SNO Detector during Construction
Neutrino Interactions on Deuterium

Charged-Current
\[\nu_e \rightarrow n + p \rightarrow \text{Cerenkov electron} \]
- Neutrino
- Deuteron
- Protons

Neutral-Current
\[\nu \rightarrow n \rightarrow n + p \rightarrow n + n + \gamma \]
- Neutrino
- Deuteron
- Neutron
- Proton
- Triton \(E_\gamma = 6.25 \text{ MeV} \)

Elastic Scattering
\[\nu_x \rightarrow e + \nu \rightarrow \text{Cerenkov electron} \]
- Neutrino
- Electron
- Neutrino
Neutrino Detection in SNO

Neutrino Interactions in D$_2$O and H$_2$O and their Flavor Sensitivity

Charged-Current (CC)

\[\nu_e + d \rightarrow e^- + p + p \]

\(\nu_e \) only

Measurement of energy spectrum

E\text{thresh} = 1.4 \text{ MeV}

Elastic Scattering (ES)

\[\nu_x + e^- \rightarrow \nu_x + e^- \]

\(\nu_x \), but enhanced for \(\nu_e \)

Strong directional sensitivity

Neutral-Current (NC)

\[\nu_x + d \rightarrow \nu_x + n + p \]

\(\nu_x \)

Measures total 8B flux from Sun

E\text{thresh} = 2.2 \text{ MeV}
Looking for Unexpected Neutrino Flavors

Comparing total flux of solar 8B neutrinos vs pure ν_e flux

CC/NC ratio is a direct signature for flavor transitions

$$\frac{[CC]}{[NC]} = \frac{[\nu_e]}{[\nu_e + \nu_\mu + \nu_\tau]}$$

CC/ES could also show significant effects

$$\frac{[CC]}{[ES]} = \frac{[\nu_e]}{[\nu_e + 0.15(\nu_\mu + \nu_\tau)]}$$

Smoking Gun for Neutrino Flavor Transformation
Testing the Hypothesis of Neutrino Oscillations

Comparing the solar ν flux at Day and Night

Certain ν oscillation models predict ν regeneration in Earth

\[
\frac{[CC]_{\text{DAY}}}{[CC]_{\text{NIGHT}}} = \frac{[\nu_e]_{\text{DAY}}}{[\nu_e]_{\text{NIGHT}}} \neq 1
\]

\[
\frac{[NC]_{\text{DAY}}}{[NC]_{\text{NIGHT}}} = \frac{[\nu_e + \nu_\mu + \nu_\tau]_{\text{DAY}}}{[\nu_e + \nu_\mu + \nu_\tau]_{\text{NIGHT}}} \neq 1
\]

Smoking Guns for Neutrino Oscillations
Solar Neutrino Physics with SNO

What can we learn from measuring the 8B solar neutrino flux at SNO?

- Total 8B ν flux (NC) vs ν_e flux (CC)

 \[\frac{CC_{SNO}}{NC_{SNO}} \rightarrow \text{Test of neutrino flavor change} \checkmark \]

- Total flux of solar 8B neutrinos

 \[\rightarrow \text{Test of solar models} \checkmark \]

- Diurnal time dependence

 \[\rightarrow \text{Test of neutrino oscillations} \]

- Distortions of neutrino energy spectrum

 \[\rightarrow \text{Test of neutrino oscillations} \]
SNO D$_2$O Phase

Pure D$_2$O
measure CC, ES
some NC sensitivity
$n+d \rightarrow t+\gamma \ldots (E_\gamma = 6.25 \text{ MeV}, \varepsilon_n \sim 29\%)$

Data Set: Nov 2, 1999 - May 27, 2001
Neutrino Livetime: 306.4 live days
Calibrating the SNO Detector Response

Calibration Issues

• Photon generation, transport, and detection
 • different media: D$_2$O, acrylic, H$_2$O, PMT
 • attenuation, reflection, scattering

• Detector geometry
• Detector status and conditions

Calibration Techniques

• Energy response
 16N 6.13 MeV γ, tagged
 p,t 19.8 MeV γ
 neutrons 6.25 MeV γ
 8Li β-spectrum 13 MeV endpoint
 8B β-spectrum 15 MeV endpoint

• Optical Response
 pulsed laser at λ=337, 365, 386, 420, 500, and 620 nm, ~2 ns resolution

• Electronics
 electronic pulzers, pulsed light sources
Established with triggered 16N ($E_\gamma = 6.13$ MeV)
Tested against 8Li, 252Cf, and (p,t) source

$\Delta E = 1.21\%$

8Li
13 MeV endpoint
(n,\(\alpha\)) on 11B

p,t
$E = 19.8$ MeV
from 3H(p,\(\gamma\))^4He

252Cf
$E = 6.25$ MeV
from n capture

Sources at Center
Components in the Raw SNO Data

Neutrino Events
- Charged-current (CC)
- Neutral-current (NC)
- Elastic scattering (ES)

Low-Energy Backgrounds
- Internal photodisintegration from U, Th in D$_2$O
- PMT β-γ
- Backgrounds from PMT support structure and cavity

High Energy Backgrounds
- Backgrounds from PSUP and cavity
- Muon-induced spallation

Instrumental Effects
- PMT flashers, bubblers
- Wet-end high voltage breakdown
- Hot cards etc.
Data Flow & Instrumental Background Cuts

Data Flow

<table>
<thead>
<tr>
<th>Analysis Step</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Event Triggers</td>
<td>450,188,649</td>
</tr>
<tr>
<td>Neutrino Data Triggers</td>
<td>191,312,560</td>
</tr>
<tr>
<td>NHIT ≥30 (Analysis Threshold)</td>
<td>10,088,842</td>
</tr>
<tr>
<td>Instrumental Background</td>
<td>7,805,238</td>
</tr>
<tr>
<td>High Level Cuts</td>
<td>3,418,439</td>
</tr>
<tr>
<td>Fiducial Volume Cut</td>
<td>67,343</td>
</tr>
<tr>
<td>Energy Threshold</td>
<td>3440</td>
</tr>
<tr>
<td>Muon Followers</td>
<td>2981</td>
</tr>
<tr>
<td>Invisibles</td>
<td>2928</td>
</tr>
<tr>
<td>Candidate Event Set</td>
<td>2928</td>
</tr>
</tbody>
</table>

Instrumental Background Removal

- Charge
- Timing
- PMT hit Geometry
- Event Rate
- PMT Veto Tubes

Cerenkov Nature of Events

- prompt light
- single particle event

Instrumental removal:

Two independent methods

Signal loss:

0.4±0.3% within $R_{fit}\leq550$ cm from 16N, 8Li, and the laser ball

Contamination:

limits from bifurcated analyses and hand-scanning
Candidate Neutrino Event
Characteristic Detector Distributions of Candidate Event Set

Energy

Radial

Solar Angle
Neutrino Signals in D$_2$O Data

Signal Extraction with CC Shape Constraint

<table>
<thead>
<tr>
<th>Type</th>
<th>Value (MeV)</th>
<th>Error (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>1967.7</td>
<td>+61.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+60.9</td>
</tr>
<tr>
<td>NC</td>
<td>576.5</td>
<td>+49.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+48.9</td>
</tr>
<tr>
<td>ES</td>
<td>263.6</td>
<td>+26.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+25.6</td>
</tr>
</tbody>
</table>

Hypothesis Test of Flavor Change

→ Assume no distortion in the 8B energy spectrum and no MSW distortions of CC

Total Number of Events: 2928

Neutron Bkgd: 78 $^{+12/-12}$
Cherenkov Bkgd: 45 $^{+18/-12}$
Solving the Solar Neutrino Problem: Test of Neutrino Flavor Change & Test of Solar Models

SNO Flux Results

- 8B from CC\textsubscript{SNO}+ES\textsubscript{SK} (2001)
- ES\textsubscript{SNO} (2001)
- CC\textsubscript{SNO} (2001)
- NC\textsubscript{SNO} (2002)
- ES\textsubscript{SNO} (2002)
- CC\textsubscript{SNO} (2002)

- 2/3 of initial solar ν_e are observed at SNO to be ν_μ, ν_τ
- Standard Solar Model predictions for total 8B flux in excellent agreement!
 \rightarrow Null hypothesis (no flavor change) ruled out at 5.3 σ level
 \rightarrow Model-independent evidence for neutrino flavor change
2/3 of initial solar ν_e are observed at SNO to be $\nu_{\mu,\tau}$

Standard Solar Model predictions for total 8B flux in excellent agreement!

$$\Phi_{^8B\text{SSM}} = 5.05 \pm 1.01 \pm 0.81$$

$$\Phi_{^8B\text{NC}_{\text{SNO}}} = 5.09 \pm 0.44 \pm 0.46 \pm 0.43$$
Model-Independence of Flux Result

Testing the theoretical inputs

In effective field theory weak axial two body current $L_{1,A}$ is dominant uncertainty of every low energy weak interaction deuteron breakup process.

Use $R^{\text{SNO}}_{\text{CC}}$, $R^{\text{SNO}}_{\text{NC}}$, $R^{\text{SK}}_{\text{ES}}$ to constrain weak axial two body current $L_{1,A}$.

<table>
<thead>
<tr>
<th>Processes</th>
<th>$L_{1,A}$ (fm^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC, NC, ES</td>
<td>4.0 ± 6.3</td>
</tr>
<tr>
<td>Reactor $\bar{\nu}$-d</td>
<td>3.6 ± 4.6</td>
</tr>
<tr>
<td>Tritium decay</td>
<td>4.2 ± 0.1</td>
</tr>
<tr>
<td>Helioseismology</td>
<td>4.8 ± 5.9</td>
</tr>
</tbody>
</table>

$L_{1,A} = 4.0 \pm 4.7$ (stat.) ± 4.5 (syst.) fm3

$\phi_{\nu x} = (6.4 \pm 1.4 \pm 0.6) \times 10^6$ cm$^{-2}$ s$^{-1}$

Theoretical inputs to SNO's determination of the CC and NC fluxes can be

- self-calibrated from $R^{\text{SNO}}_{\text{CC}}$, $R^{\text{SNO}}_{\text{NC}}$
- calibrated from $R^{\text{SK}}_{\text{ES}}$
- calibrated by reactor data

Ref: Chen, KMH, Robertson nucl-th/0210073
SNO Charged-Current Energy Spectrum

Testing the Hypothesis of Oscillations through Spectral Distortions

CC spectrum derived from fit \textit{without} constraint on shape of 8B spectrum

CC spectrum normalized to predicted 8B spectrum

\rightarrow No evidence for shape distortions
Solar ν Flux at Day and Night

Testing the Hypothesis of Neutrino Oscillations through the Earth-Matter Effect

Certain ν oscillation models predict ν regeneration in Earth

$$\frac{[CC]_{DAY}}{[CC]_{NIGHT}} = \frac{[\nu_e]_{DAY}}{[\nu_e]_{NIGHT}} \neq 1$$

Neutrino Oscillations

Day/Night Asymmetries of ν Flux:

$$A^{SNO}_{\nu_e} = 7.0 \pm 4.9\%$$

$$A^{SK}_{\nu_e} = 5.3 \pm 3.7\%$$
Solar Neutrino Flux at Day and Night

Total Livetime: 306.4 days
Number of Events: 2928

Day: 128.5 days
Night: 177.9 days

Day-Night Energy Spectrum

Day-Night Fluxes

Signal Extraction in Φ_{CC}, Φ_{NC}, Φ_{ES}

Day
Night

$\Phi_{Day+Night}$

$\Phi_{Day+Night}$

$\Phi_{Day+Night}$

$\Phi_{Day+Night}$

$\Phi_{Day+Night}$

Φ in units of 10^6 cm$^{-2}$ s$^{-1}$

Karsten Heeger, LBNL
Moriond, March 16, 2003
Oscillation Interpretation of Solar Neutrino Data

Matter Enhanced Oscillations

- explains energy dependence
- effective 2-neutrino mixing
- MSW gives dramatic extension of oscillation sensitivity to potential regions in Δm^2

Chlorine Homestake
Gallium GALLEX/GNO
SAGE
Water Super-Kamiokande

Solar neutrino data are consistent with the MWS hypothesis. Several possible oscillation solutions.
Solar Neutrinos in the Big Picture

Reactor and Beamstop Neutrinos

$\nu_\mu \Rightarrow \nu_s \Rightarrow \nu_e$

Atmospheric and Reactor Neutrinos

$\nu_\mu \Rightarrow \nu_\tau$

Solar and Reactor Neutrinos

$\nu_e \Rightarrow \nu_{\mu,\tau}$

Large mixing favored

LMA solution can be tested with reactor neutrinos

Status: Summer 2002

Murayama

Karsten Heeger, LBNL

Moriond, March 16, 2003
Neutrino Mixing Matrix

Mixing Angles

Solar
\[\theta_{12} = 30.3^\circ \]

Atmospheric
\[\theta_{23} = \sim 45^\circ \]

Chooz + SK
\[\tan^2 \theta_{13} < 0.03 \text{ at } 90\% \text{ CL} \]

\[
U = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1/\sqrt{2} & 1/\sqrt{2} \\
0 & -1/\sqrt{2} & 1/\sqrt{2}
\end{pmatrix} \times \begin{pmatrix}
\sim 1 & 0 & e^{-i \delta_{CP}} \sin \theta_{13} \\
0 & 1 & 0 \\
-e^{i \delta_{CP}} \sin \theta_{13} & 0 & \sim 1
\end{pmatrix} \times \begin{pmatrix}
0.85 & 0.51 & 0 \\
-0.51 & 0.85 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

- **atmospheric \(v \)** (SK)
- **reactor and accelerator \(v \)** (Chooz)
- **solar \(v \) + KamLAND** (LMA)
Solar Neutrino Oscillation Parameters

Before KamLAND

Region favored by solar ν experiments

After KamLAND

KamLAND 95% exclusion by rate

KamLAND 95% allowed by rate+shape
Constraining Oscillation Parameters with SNO

Precision Measurement of θ_{12}

Assumptions: 8% measurement of SNO NC/CC
$A_{\text{SNO CC}}^{\text{CC}} = 7 \pm 4%$
Enhanced NC sensitivity

\[\varepsilon_n \sim 45\% \text{ above threshold} \]

\[n + ^{35}\text{Cl} \rightarrow ^{36}\text{Cl}^+ + \gamma \]

Systematic check of energy scale

\[E_{\Sigma \gamma} = 8.6 \text{ MeV} \]

Statistical separation of NC and CC interactions by event isotropy
SNO Phase III - Neutral Current Detection via 3He(n,p)3H

Summer 2003 - 2005?

Array of 3He counters
- 50 Strings on 1-m grid
- 450 m total active length

Detection Principle

$$^2\text{H} + \nu_x \rightarrow p + n + \nu_x - 2.22 \text{ MeV} \quad \text{(NC)}$$

$$^3\text{He} + n \rightarrow p + ^3\text{H}$$

Physics Motivation

Event-by-event separation. Measure NC and CC in separate data streams.

Different systematic uncertainties
- than neutron capture on NaCl.

NCD array as active poison.
What has been learned?

- The Solar Neutrino problem was caused by new neutrino properties.
- Neutrinos have mass.
- Neutrinos have mixed flavor, and …. they oscillate.
- Unlike the quark sector the lepton sector exhibits large mixing.
- Evidence that Standard Model of Particle Physics is incomplete.

- Direct evidence of neutrino flavor conversion from SNO at > 5σ.
- First measurement of total flux of active 8B neutrinos confirms Standard Solar Model predictions
- No evidence of regeneration in Earth or spectral distortions.

- Can use solar ν to study neutrino properties!
Outlook

Next steps in SNO ...

• Enhanced NC measurements in SNO (NaCl and 3He-filled NC detectors) will improve model-independent NC rate measurement.

• Improved NC/CC measurement will help constrain θ_{12}.

• Search for direct signs of neutrino oscillation in energy spectrum.

and in solar neutrino physics ...

• Towards direct detection of 7Be neutrinos with Borexino and KamLAND.

• R&D on low-energy solar pp neutrino detection for more precise measurements of oscillation parameters and detailed tests of solar models.
The SNO Collaboration

G. Milton, B. Sur
Atomic Energy of Canada Ltd., Chalk River Laboratories

S. Gil, J. Heise, R.J. Komar, T. Kutter, C.W. Nally, H.S. Ng, Y.I. Tserkovnyak, C.E. Waltham
University of British Columbia

J. Boger, R.L Hahn, J.K. Rowley, M. Yeh
Brookhaven National Laboratory

R.C. Allen, G. Böhler, H.H. Chen
University of California, Irvine

Carleton University

University of Guelph

Laurentian University

Lawrence Berkeley National Laboratory

Los Alamos National Laboratory

J.D. Anglin, M. Bercovitch, W.F. Davidson, R.S. Storey
National Research Council of Canada

University of Oxford

University of Pennsylvania

R. Kouzes
Princeton University

Queen’s University

D.L. Wark
Rutherford Appleton Laboratory, University of Sussex

R.L. Helmer, A.J. Noble
TRIUMF

University of Washington