Recent KamLAND Results

• Introduction

• First KamLAND Reactor Antineutrino Analysis

• Recent KamLAND Results

• Future: Reactor and Solar Phases

• Conclusions
Motivation

- Situation several years ago:
 With MSW matter effects, solar neutrino oscillation constraints allowed several very different regions of mixing parameter space

- A reactor antineutrino experiment with a baseline ~200 km could measure or rule out LMA oscillation

- After first SNO results, global analyses of all solar data favored LMA
Reactor Antineutrinos

• Nuclear power plants produce electron antineutrinos $\bar{\nu}_e$ through the β-decay of fission fragments

• Antineutrinos detected through inverse β-decay:
 $\bar{\nu}_e + p \rightarrow e^+ + n$

• Prompt signal:
 positron ionization, annihilation
 $E_{\text{prompt}} = E_{\bar{\nu}} - 0.8 \text{ MeV}$

• Delayed signal:
 thermal neutron capture
 $E_{\text{delayed}} = 2.2 \text{ MeV (hydrogen)}$
 $\sim 200 \mu s$

Bruce Berger
Rencontres de Moriond - March 6, 2005
Why Japan?

Convenience!

Neutrino Convenience Store near Kamioka, Japan

“neutrino”
Why Japan?

KamLAND uses the entire Japanese nuclear power industry as a long-baseline source. 80% of flux from baselines 140-210 km
Effects of Oscillations

- Oscillations change both the rate and energy spectrum of detected events

\[P_{ee} = 1 - \sin^2\theta \sin^2(1.27 \Delta m^2 L/E) \]

- Multiple reactors at different baselines complicate the signal

- Reactor operation data is critical!

Example spectra (L.A. Winslow)

Top: \(\Delta m^2 = 1.5 \times 10^{-4}, \tan^2\theta = 0.41 \) (‘LMA II’)

Bottom: \(\Delta m^2 = 0.7 \times 10^{-4}, \tan^2\theta = 0.41 \) (‘LMA I’)

*top 4 reactors at full thermal power only
KamLAND Detector

- 1 kton liquid scintillator
- Mineral oil buffer outside 120-µm nylon balloon
- 1879 PMTs
 - 1325 17" fast
 - 554 20" efficient
- Water Čerenkov
- Outer Detector
- Event position from light arrival times
 - ~20 cm resolution
- Event energy from total light yield
 - ~6.2%/[E(MeV)]$^{1/3}$ resolution
First Reactor Antineutrino Result

- Observed neutrino disappearance:

\[(N_{\text{obs}} - N_{BG})/N_{\text{no-osc}} = 0.611 \pm 0.085 \text{ (stat)} \pm 0.041 \text{ (syst)}\]

- Probability that 86.8 events would fluctuate down to 54 is < 0.05%

- “Standard” $\bar{\nu}_e$ propagation ruled out at the 99.95% confidence level
Rate + Shape Analysis

- Fit prompt (positron) energy spectrum above 2.6 MeV with full reactor information (power, fuel, flux), 2-flavor mixing
- Energy spectrum was consistent with constant suppression but the absence of distortions constrained oscillation parameters
Assuming CPT invariance:
- KamLAND rate analysis
 - confirms LMA
 - rules out all other regions
- Shape analysis further constrains LMA parameters
 - LMAI (lower)
 - LMAII (upper)

Best-fit values of mixing parameters are in the same region for both neutrinos and antineutrinos > test of CPT

- KamLAND constraints symmetric about $\tan^2\theta=1$ due to absence of matter effects
Latest KamLAND Result

Improvements since the first analysis:

• **More data:** Livetime increased from 145.1 to 515.1 days

• **Fiducial volume increased** from 5 to 5.5 m

• **Analysis improvements**
 - Vertex reconstruction, energy calibration, muon fitting, general understanding of the detector

• **Identification of a new background:** $^{13}\text{C}(\alpha,n)^{16}\text{O}$
13C(α,n)16O

• 13C(α,n)16O cross section ~10^-7

• KamLAND scintillator contains 210Pb a long-lived radon decay product

• 210Pb decay chain produces α’s 210Pb → 210Bi → 210Po → 206Pb + α

• Total α decays in dataset: (1.47 ± 0.20) x 10^9

• Produces fast neutron background is mostly below 2.6 MeV

• Most of the background above 2.6 MeV is from an excited state of 16O populated by 13C(α,n)16O* prompt 6 MeV gamma delayed neutron capture

• Largest background above 2.6 MeV: 10.3 ± 7.1 out of 17.8 ± 7.3
Latest KamLAND Result

- Second KamLAND reactor antineutrino paper
 (hepex-0406035; 6/13/2004; revised 11/1/2004; accepted by PRL)

- Statistical significance of disappearance: 99.998% (was 99.95%)

- Data now show shape distortion at 99.6% significance
Rate vs. Flux

- KamLAND can't turn the reactors off to measure backgrounds and confirm directly that the signal is from reactors
- However, the reactor antineutrino flux has varied significantly during KamLAND operation
- Consistent with reactor antineutrinos
L₀/E Plot

- Oscillation depends on L/E
 KamLAND doesn’t measure L, but the flux distribution has a strong peak
 A typical value L₀=180 km is used
 This is really a 1/E plot
 Oscillations smeared out in 1/E

- Goodness of fit:
 0.7% - decay
 1.8% - decoherence
 11.1% - oscillation
 (0.4% - constant suppression)

- Data prefer oscillation to other hypotheses
Latest KamLAND Result

- KamLAND data in agreement with global fits to solar neutrino results
- KamLAND alone now measures $\Delta m^2 = 7.9^{+0.6}_{-0.5} \times 10^{-5} \text{ eV}^2$
- Global analysis of KamLAND plus solar data gives $\Delta m^2 = 7.9^{+0.6}_{-0.5} \times 10^{-5} \text{ eV}^2$ and $\tan^2 \theta = 0.40^{+0.10}_{-0.07}$
Rate analysis and mixing angle determination are now systematics limited.

6.5% systematic uncertainty dominated by 4.7% fiducial volume systematic.

Building a “4π” calibration system to directly calibrate vertex reconstruction in the full fiducial volume. We currently only have calibration along the vertical axis.

Δm² resolution comes from distortions in the energy spectrum, which are not as sensitive to our systematics > still statistics limited.

4π sketch
Reactor Experiment Future

- New Shika cores starting 2006
 - Significant flux increase at 88 km, near first oscillation minimum
 - Should have larger rate suppression for these neutrinos

- Other physics measurements:
 Geoneutrinos: antineutrinos produced by the β-decay of U and Th in the earth
 - Large $^{13}C(\alpha,n)^{16}O$, accidental backgrounds
 - Paper forthcoming
 Spallation production of neutrons, delayed-coincidence backgrounds e.g. 9Li, other product e.g. 12B
 - Understanding these processes is important for future experiments e.g. reactor measurement of θ_{13}

Higher-energy antineutrinos
Nucleon decay
KamLAND Solar Phase

Goal is a direct measurement of the solar 7Be neutrino flux

Tough measurement:
- single ES event
- need very low background to statistically extract the signal

Solar Standard Model (SSM)
7Be prediction is at the ~10% level
- This measurement is not expected to improve the determination of mixing parameters
- Measurement will improve the SSM

7Be neutrino energy is below the MSW transition
- survival probability is different than 8B ν
 seen by Super-K, SNO
- verification of MSW effect

John Bahcall
KamLAND Solar Phase

- KamLAND scintillator has very low U, Th levels from initial purification, but other contaminants must be reduced substantially:
 - ~10^6: 85Kr - present in atmosphere, from N2 bubbling
 - ~10^5: 210Pb, 210Bi - from radon contamination

<table>
<thead>
<tr>
<th>Background</th>
<th>Current Level</th>
<th>7Be Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>238U</td>
<td>3.5×10^{-18} g/g</td>
<td>OK</td>
</tr>
<tr>
<td>232Th</td>
<td>5.2×10^{-17} g/g</td>
<td>OK</td>
</tr>
<tr>
<td>40K</td>
<td>2.7×10^{-16} g/g</td>
<td>~10^{-18} g/g</td>
</tr>
<tr>
<td>85Kr</td>
<td>0.7 Bq/m3</td>
<td>1μBq/m3</td>
</tr>
<tr>
<td>210Pb</td>
<td>~10^{-20} g/g</td>
<td>5×10^{-25} g/g</td>
</tr>
</tbody>
</table>

- A great deal of R&D progress on purification approaches: distillation, adsorption, heating

- Upgrade project approved in Japan, receiving major funding
 - Construction of initial purification system to be complete by March 2006
KamLAND Solar Phase

- Signal and backgrounds:
 - 7Be signal now $\sim 10^6$ below backgrounds:
 - 85Kr, 210Bi β, 210Po α

- Other benefits of purification:
 - Eliminates 13C(α,n)16O background for reactor antineutrinos, geoneutrinos
 - Enhances supernova signals by adding singles detection below 1MeV
Conclusions

KamLAND made the first observation of reactor antineutrino disappearance

Current KamLAND results show disappearance at the 99.998% CL and spectral shape distortion at 99.6%.

“Solar” oscillation mixing results have gone from allowed regions spanning many orders of magnitude to parameter measurement

Reactor results will continue to improve

KamLAND is gearing up to measure solar 7Be neutrinos

KamLAND public data release: http://www.awa.tohoku.ac.jp/KamLAND/datarelease/2ndresult.html Individual candidate energies, etc.