DIVERGENCIES AND SYMMETRIES IN HIGGS-GAUGE UNIFICATION THEORIES

(see also hep-ph/0410226)

Outline:
1. Introduction: motivations for Higgs-gauge unification theories
2. Gauge theories on orbifolds
3. Symmetries @ fixed points and localized terms
4. The residual O_f symmetry
5. Conclusions and outlook

XL Rencontres de Moriond
ELECTROWEAK INTERACTIONS & UNIFIED THEORIES
La Thuile (IT), 5-12/03/04
A possible motivation:

Little Hierarchy Problem (LHP)

Barbieri & Strumia 00 Giudice 03

- **Standard Model (SM):** effective theory with cutoff Λ_{SM}

\[\delta m_H = \frac{3G_F}{4\sqrt{2}\pi^2} \left(2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2 \right) \Lambda_{SM}^2 = \left(\frac{200\text{GeV}}{0.7\text{TeV}} \right)^2 \]

No fine-tuning \rightarrow $\Lambda_{SM} \lesssim 1\text{ TeV}$

- **New physics** \leftrightarrow non-renormalizable (dimension six) operators O

\[L = L_{SM} \pm \frac{1}{\Lambda_{LH}^2} O \]

Precision tests \rightarrow $\Lambda_{LH} \gtrsim 5-10\text{ TeV}$

One order of magnitude of discrepancy: LHP
A possible solution:

Supersymmetry (SUSY)

- SUSY → no quadratic divergences → (grand) HP solved:
 SUSY SM (MSSM) can be extended up to M_{Pl}

 \[\Lambda_{SM} \sim M_{SUSY} \]

- If R-parity is conserved → SUSY virtual loops are suppressed →

 \[\Lambda_{LH} \sim 4\pi\Lambda_{SM} \quad \rightarrow \quad \text{LHP solved} \]

However:
- SUSY not yet been observed → fine-tuning
- SUSY breaking sector not well defined
- ...

Worthwhile looking for alternative solutions
An alternative solution:

Higgs-gauge unification

Consider a gauge theory in a D-dimensional space-time

\[
A_M^A = \left\{ A_{\mu}^A, A_i^A \right\}
\]

4D Lorentz scalars \(\rightarrow \) Higgs fields!

\(\Lambda^{\text{SM}} \sim 1/R \sim \text{TeV} \)

D-dimensional theory UV completion

4D Lorentz vector

they can acquire mass through the Hosotani mechanism

\(\Lambda_D \geq 10 \text{ TeV} \)

Higgs mass in the bulk is protected by higher-dimensional gauge invariance

finite corrections \(\sim (1/R)^2 \) allowed

\(\Lambda^2 A_i^A A_j^B \)

\(\Lambda_{\text{SM}} \sim 1/R \sim \text{TeV} \)

\(\Lambda_D \geq 10 \text{ TeV} \)

→ LHP solved
Gauge theory in D dimensions

Spacetime: M^D
coord.: $x^M = (x^\mu, y^i)$

$$L_D = -\frac{1}{4} F_{MN} F^{MN} + i\bar{\psi} \Gamma^D D_M \psi$$

Invariant under gauge group G ($SO(1,D-1)$)

Compactification on the orbifold $M^4 \times T^d / G_{orb}$

- $T \cdot y = y + u \quad u \in \Lambda^d$

Torus: $y \equiv y + u$

- $k \in G_{orb} \quad k \cdot y = R_k y + u \quad R_k \in SO(d)$

Orbifold: $y \equiv R_k y + u$

Fixed points: invariants under G_{orb}

$$k \cdot y_f = y_f$$

5D: S^1 / Z_2

$\cdots \quad y \quad y + 2\pi R \quad \cdots$

\downarrow

$y = y + 2\pi R$

Circle S^1

$\pi R \quad 0 \quad -\pi R$

\downarrow

$y = -y$

Orbifold S^1 / Z_2

bulk πR

fixed points
Action of G_{orb} on the fields

$$k \cdot \phi_R(y) = \lambda^k_R \otimes P^k_\sigma \phi_R(k^{-1} \cdot y)$$

acts on Lorentz indices

acts on gauge and flavour indices

acts on Lorentz indices

unconstrained

fixed by requiring invariance of lagrangian

it can be used to break symmetries

S^1: $\phi(x^\mu, y) = \sum_{n=-\infty}^{+\infty} e^{i R y} \phi_n(x^\mu)$ → 4D fields with mass $m_n = \frac{n}{R}$

S^1/Z_2: \[\begin{align*}
\phi(y) &= +\phi(-y) & \phi^+(x^\mu, y) &= \sum_{n=0}^{+\infty} \cos\left(\frac{n}{R} y\right) \phi^+_n(x^\mu) \\
\phi(y) &= -\phi(-y) & \phi^-(x^\mu, y) &= \sum_{n=1}^{+\infty} \sin\left(\frac{n}{R} y\right) \phi^-_n(x^\mu)
\end{align*} \]

• zero mode: only for $\phi^+_0(x^\mu)$

• @ y_f $\phi^-(x^\mu, k\pi R) = 0$
Gauge symmetry breaking @ y_f

- Why looking @ y_f?
 → lagrangian terms localized @ the fixed points can be radiatively generated
 (if compatibles with symmetries)

- $G \equiv \{ T^A \} \xrightarrow{G_{\text{orb}}} H_f \equiv \{ T^a_f \} @ y_f$

\[
\begin{bmatrix}
T^a_f, \chi^k_R
\end{bmatrix} = 0
\]

Non-zero fields @ y_f:
- $A^a_{\mu} A^{\dot{a}}_i$ (for some i & \dot{a}) (with zero modes)
- some derivatives of non-invariant fields
 (without zero modes)

\[\downarrow\]
Residual global symmetry K

Gorsdorff, Irges & Quirós 02

[Diagram showing the transformation and fixed points]

Georgi, Grant & Hailu 00
Effective 4D lagrangian

\[L_{4}^{\text{eff}} = \int d^{d}y \left[L_{D} + \sum_{f} L_{f} \delta^{d}(y - y_{f}) \right] \]

\(L_{f} \to \) most general 4D lagrangian compatible with symmetries @ \(y_{f} \)

The symmetries @ \(y_{f} \) are: \(G_{\text{orb}} \), \(\text{SO}(3,1) \), \(H_{f} \), \(K \)

Forbidden terms:

If \(A_{i}^{\hat{a}} \) is \(G_{\text{orb}} \)-invariant \(\Rightarrow \) a “shift” symmetry forbids a direct mass term:

\[\Lambda^{2} A_{i}^{\hat{a}} A_{j}^{\hat{b}} \]

Allowed terms:

\[F_{\mu \nu}^{a} F^{a \mu \nu} \to \text{localized kinetic term for } A_{\mu}^{a} \]

\[F_{\mu \nu}^{a} \tilde{F}^{a \mu \nu} \to \text{localized anomaly} \]

\(\to \) If \(A_{i}^{\hat{a}} \) and \(F_{ij}^{a} \) are orbifold invariant

\[F_{ij}^{a} F^{aij} \to \text{localized quartic coupling for } A_{i}^{\hat{a}} \quad (D \geq 6) \]

\[F_{i \mu}^{\hat{a}} F^{\hat{a} i \mu} \to \text{localized kinetic term for } A_{i}^{\hat{a}} \]

All these are dimension FOUR operators \(\to \) renormalize logarithmically
... another (worse) allowed term...

If $H_f = U(1)^a \times ...$ and A_i^a and F_{ij}^a are orbifold invariant

$$F_{ij}^a = \partial_i A_j^a - \partial_j A_i^a - g f^{abc} A_i^b A_j^c$$

is invariant under $G_{\text{orb}} \to \text{SO(3,1)}$ $H_f \to K$

- tadpole for $\partial_i A_j^a$
- mass term for $A_i^b A_j^c$

This is a dimension TWO operator \to quadratic divergencies

$D \geq 6$ it seems it always exists

- $D=6$ (QFT)
 Gersdorff, Irges & Quirós 02
 Csaki, Grojean & Murayama 02
 Scrutti, Serone, Silvestrini & Wulzer 03 (SSSW03)
- $D=10$ (strings)
 Groot-Nibbelink et al. 03

* How can we avoid this?

1. global cancellation of tadpoles
2. ...
But...

another symmetry must be considered

- d-dimensional smooth manifold:
 at each point can be defined a TANGENT SPACE \rightarrow SO(d)

- when orbifolding:
 as $G \xrightarrow{G_{\text{orb}}} H_f$ such that $\left[\lambda^k_R, H_f \right] = 0$

 so $SO(d) \xrightarrow{G_{\text{orb}}} O_f$ such that $\left[P^k_\sigma, O_f \right] = 0$

The symmetries @ y_f are: $G_{\text{orb}} \ SO(3,1) \ H_f \ K \ O_f$

* Can this O_f forbid the tadpole?
The tadpole F_{ij} and the symmetry O_f

- If $O_f = SO(2) \times \ldots$ then the Levi-Civita tensor ε^{ij} exists

 \[\varepsilon^{ij} F_{ij}^\alpha \] is O_f invariant \rightarrow \text{TADPOLES ARE ALLOWED}

- If $O_f = SO(p_1) \times SO(p_2) \times \ldots \ (p_i > 2)$ then the Levi-Civita tensor is $\varepsilon^{i_1i_2\ldots i_p}$

 \[\varepsilon^{i_1i_2\ldots i_p} B_{i_1i_2\ldots i_p} \] \rightarrow \text{NO TADPOLES}

Sufficient condition for the absence of localized tadpoles

\[O_f = \prod SO(p_i) \quad p_i > 2 \]

O_f is orbifold-dependent: we studied the T^d/Z_N case
Orbifolds T^d/Z_N \hspace{1cm} (d even)

- O_f depends on R_{N_f}:

 on $T^d/Z_N \rightarrow R_{N_f} \sim \text{diag}(r_1...r_i...r_{d/2})$ with r_i rotation in the i-plane

- If $N_f>2 \Rightarrow O_f = \prod_{i=1}^{d/2} SO(2) \supseteq SO(d)$ which acts on (y_{2i-1}, y_{2i})

 \Rightarrow in every subspace (y_{2i-1}, y_{2i}) ε^{IJ} exists

 $\Rightarrow \sum_{i=1}^{d/2} \sum_{I,J=2i-1}^{2i} \varepsilon^{IJ} F^\alpha_{IJ} \delta^{d/2} (y - y_f)$

- If $N_f=2 \Rightarrow R_{N_f} = -1 \Rightarrow [-1, SO(d)] = 0$

 $\Rightarrow O_f = SO(d)$ the Levi-Civita tensor is $\varepsilon^{i_1i_2...i_d}$

 \rightarrow only invariants constructed with d-forms are allowed

 \rightarrow TADPOLES ONLY FOR $d=2$ (D=6) valid also for odd D

* $T^d/Z_2 \rightarrow$ explicitely checked @ 1- and 2-loop for any D \hspace{0.5cm} BQ'04
Conclusions

In Higgs-gauge unification theories \((\text{Higgs} = A_i)\)

- bulk gauge symmetry \(G\) prevents the Higgs from acquiring a quadratically divergent mass in the bulk
- “shift” symmetry \(K\) forbids a direct mass @ \(y_f\)

If \(H_f = U(1)^a \times \ldots \quad F_{ij}^\alpha\) can be radiatively generated @ \(y_f\) giving rise to a quadratically divergent mass for the Higgs

\(F_{ij}^\alpha\) can be generated \(\leftrightarrow\) it is \(O_f\)-invariant

\(O_f \subseteq SO(d)\) such that \(\left[O_f, P^k_\sigma \right] = 0\)

If \(O_f = SO(p_1) \times SO(p_2) \times \ldots \quad (p_i>2)\) \(\rightarrow\) NO TADPOLES

If \(O_f = SO(2) \times \ldots\) \(\rightarrow\) TADPOLES

- \(T^d/Z_N\) (d even, \(N>2\): if \(N_f>2\) \(\rightarrow\) \(O_f = SO(2) \times \ldots \times SO(2)\) \(\rightarrow\) TADPOLES
- \(T^d/Z_2\) (any d): \(O_f = SO(d)\) \(\rightarrow\) TADPOLES ONLY FOR \(d=2\) (D=6)
Outlook

The absence of tadpoles is a necessary but not sufficient condition for a realistic theory of EWSB without SUSY

Other issues:

• REALISTIC HIGGS MASS

 \(D > 6 \) (\(D = 5 \) no quartic coupling, \(D = 6 \) tadpoles)

 \(\mathbb{T}_d / \mathbb{Z}_2 \rightarrow \text{d Higgs fields} \Rightarrow \text{non-minimal models} \)

 \(\rightarrow \) we have to obtain only one SM Higgs
 even if this is achieved

 \(\rightarrow \) Higgs mass must be in agreement with LEP bounds

• FLAVOUR PROBLEM

 - matter fermions in the bulk coupled to a background
 which localizes them at different locations

 Burdman & Nomura 02

 - matter fermions localized and mixed with extra heavy
 bulk fermions

 Csaki, Grojean & Murayama 02