Higgs-less Higgs mechanism: low-energy expansion

Johannes Hirn

IFIC, Universitat de València, Spain

In collaboration with Jan Stern (Orsay, France)
Alternatives to the SM: without a Higgs

- **Higgs mechanism**: 3 GBs give masses to W^\pm and Z^0
 - In the SM, 1 physical scalar: **Higgs boson** \rightarrow renormalizable
 - Add **SUSY** \rightarrow allow $\Lambda_{\text{new physics}} \rightarrow \infty$ with m_H fixed, or...
 - Get rid of Higgs boson \rightarrow $\Lambda_{\text{new physics}}$ finite: non-decoupling

Familiar approach: ideas from QCD

- (Walking) technicolor: strongly-interacting at ~ 3 TeV \rightarrow uncomputable

Recent approach: weak-coupling up to 10's of TeV \rightarrow new particles below TeV

- 5D Higgsless models: KK$^\text{holography}$ \leftrightarrow resonances of 4D strongly-coupled thy.
 Csáki, Grojean, Murayama, Terning, Barbieri, Pomarol... 03

Effective theory approach: rely on symmetries

- DOFs: light particles ($m \rightarrow 0 \leftrightarrow$ symmetry \uparrow) \rightarrow scalar sector: only the 3 GBs. No Higgs
Outline

- Introduction

- **Non-decoupling effective theories**
 - Loop expansion: Weinberg power-counting formula

- Application to EWSB without a Higgs particle
 - Difficulties at leading order: irrelevant operators from the SM

- Use **larger symmetry** $\text{SU}(2)^4 \times \text{U}(1)_{B-L}$
 - Reduced via *spurions* to $\text{SU}(2)_L \times \text{U}(1)_Y$

- Consequences
Expansion in non-decoupling effective theories

$L(\dim \leq 4)$ non-renormalizable \implies expansion in $\partial_\mu/L_{\text{new physics}}$

- **Rescale** operators in L

 \[p \mapsto tp, \quad g \mapsto tg \implies M_W \mapsto tM_W, \quad \chi \mapsto \sqrt{t} \chi \quad t \rightarrow 0 \]

 - Vertex v scales as t^{d_v}, with **hopefully** $d_v \geq 2$

 \implies diagram with L loops scales as t^D (i.e. is $O(p^D)$) with
 \[
 D = 2 + 2L + \sum_{v=1}^{V} (d_v - 2) \quad \text{Weinberg 79}
 \]

- **Precision** $D \implies L \leq D/2 - 1 \implies$ finite number of diagrams/divergences

 - $O(p^2)$: tree diagrams with $L_{O(p^2)}$

 - $O(p^4)$: one-loop diagrams with $L_{O(p^2)}$, renormalized by $L_{O(p^4)}$ trees

- Renormalized and unitarized **order-by-order** Gasser, Leutwyler 84

 - Finite scale-independent results: no cut-off
Direct application to Higgs-less EWSB

\[\text{SU}(2)_L \times \text{U}(1)_Y \rightarrow \text{U}(1)_{\text{em}} : 3 \text{ GBs} \implies \Sigma \in \text{SU}(2): \quad \Sigma \leftrightarrow G \Sigma e^{i \alpha_0 \tau^3 / 2} \]

- Compare Higgs doublet \(\Phi \equiv (\phi_c, \phi) \):
 \[\Sigma \leftrightarrow \Phi / \sqrt{\det \Phi} \]
 \[\nu \approx 246 \text{ GeV of the SM} \rightarrow \text{GB decay constant} \rightarrow \Lambda_{\text{new physics}} \approx 3 \text{ TeV} \]

Conflict with phenomenology: unwanted operators at \(\mathcal{O}(p^2) \) (irrelevant in SM)

\[b^{0}_{\mu \nu} \left< G^{\mu \nu} \Sigma \tau^3 \Sigma^\dagger \right> \implies S \quad \text{Holdom, Terning 90} \]

\[\Lambda^2 \left< \tau^3 \Sigma D_\mu \Sigma \right>^2 \implies T \quad \text{Longhitano 80} \]

\[i \overline{\chi_L} \gamma^\mu (D_\mu \Sigma)^\dagger \chi_L \implies \delta_L \quad \text{Appelquist et al. 80} \]

\[i \overline{\chi_R} \gamma^\mu (\Sigma^\dagger D_\mu \Sigma) \chi_R \implies \delta_R \quad \text{Peccei, Zhang 95} \]

Consider scenarios where suppression is automatic: larger symmetry \(S_{\text{natural}} \)

Danger for consistency of expansion: operators with \(d_\nu < 2 \)

- Fermion masses and LNV appear at \(\mathcal{O}(p^1) \)
 \[\Lambda \overline{\chi_L} \Sigma \chi_R = \mathcal{O}(p^1) \]
 \[\Lambda \overline{\ell_L} \Sigma^\dagger \tau^- \Sigma (\ell_L)^c = \mathcal{O}(p^1) \]
Larger symmetry $S_{\text{natural}} = \text{SU}(2)^4 \times \text{U}(1)$

Elementary sector:

- Elementary $\text{SU}(2)_{GL} \times \text{SU}(2)_{GR} \times \text{U}(1)_{B-L}$ gauge fields
 \[g_L G^a_{L\mu}, \quad g_R G^a_{R\mu}, \quad g_B G_{B\mu} \]

- Left and right fermion doublets (right isospin \implies custodial symmetry)
 \[\chi_L \leftrightarrow G_L e^{-i \frac{B-L}{2} \alpha} \chi_L \]
 \[\chi_R \leftrightarrow G_R e^{-i \frac{B-L}{2} \alpha} \chi_R \]
 introduced ν_R

Composite sector:

- 3 GBs of spontaneous $\text{SU}(2)_{\Gamma_L} \times \text{SU}(2)_{\Gamma_R} \rightarrow \text{SU}(2)_{\Gamma_L+\Gamma_R}$
 \[\Sigma \leftrightarrow \Gamma_L \Sigma \Gamma_R^\dagger \]

- Ward ids of global sym. \leftrightarrow local invariance \Rightarrow connections $\Gamma^a_{L\mu}, \Gamma^a_{R\mu}$
Spurions & constraints

Identification up to a gauge:

\[\Gamma_L = \Omega_L g_L G_{L \mu} \Omega_L^\dagger + i \Omega_L \partial_\mu \Omega_L^\dagger \]

- Imagine that \(\Omega_L \mapsto G_L \Omega_L \Gamma_L^\dagger \) is a field
Spurions & constraints

Identification up to a gauge: \(D_\mu \Omega_L = 0 \)

- Imagine that \(\Omega_L \mapsto \mathcal{G}_L \Omega_L \Gamma^\dagger_L \) is a field
Spurions & constraints

Identification up to a gauge: \(D_\mu \Omega_L = 0 \)

- Imagine that \(\Omega_L \mapsto G_L \Omega_L \Gamma_L^{\dagger} \) is a field
- But, \(\Omega_L \) unitary \(\Rightarrow \) redundant \(\Rightarrow \) need to introduce constant in front \(\Rightarrow \xi U_L \)

Spurions: field \(X(x) \mapsto G_L X \Gamma_L^{\dagger} \) (reality cond. \(\tau^2 X^\ast \tau^2 = X \))

- Impose constraint \(D_\mu X = 0 \) \(\Rightarrow \) no kinetic term \(\Rightarrow \) does not propagate
 - To solve constraint: choose appropriate gauge & find
 \[
 \Gamma_{L\mu} = g_L G_{L\mu} \quad X = \xi 1 \quad \text{with} \quad \partial_\mu \xi = 0
 \]

- Generic spurions \(Y_u \) selects & identifies \(U(1) \) subgroups of \(\Gamma_R \) & \(G_R \)
- Generic spurion \(Z \) to identify \(U(1) \) subgroup of \(G_R \) with \(U(1)_{B-L} \)

Consequences of constraints: \(S_{\text{natural}} \) reduced to \(SU(2)_L \times U(1)_Y \)

- Spurions \(X, Y_u, Z \) eliminated in favor of 3 constants \(\xi, \eta, \zeta \)
 - \(S_{\text{natural}} \) protects \(\xi, \eta, \zeta \) \(\Rightarrow \) use them as expansion parameters

Spurions: ignore details of mechanisms, only use symmetries
The leading-order lagrangian

Build most \textbf{general lagrangian invariant under }S_{natural}

- \textbf{Double expansion}: usual momentum one + spurions
 - Solve constraints on spurions, yields constants ξ, η, ζ

\textbf{Leading order:}

- $O(p^2)$ lagrangian \textbf{without} spurions
 - GB kinetic term $\implies W^\pm$ \& Z^0 masses
 \[M_{W}^2 = g^2 \frac{f^2}{4}, \quad M_{Z}^2 = \left(g^2 + g'^2 \right) \frac{f^2}{4} \]
 - Fermion interactions as in the SM (Higgs removed)

- $O(p^1)$ lagrangian with \textbf{two powers of }X \textbf{or }Y
 - Dirac masses: \quad (\text{suggests counting } XY = O(p))
 \[\mathcal{L}_{\text{quark masses}} = - \left(\mu_{ij}^{u} \overline{q}_{L}^{i} X^{\dagger} \sum Y_{u} q_{R}^{j} + \mu_{ij}^{d} \overline{q}_{L}^{i} X^{\dagger} \sum Y_{d} q_{L}^{j} \right) \]
What happened to the SM irrelevant operators?

Come with powers of spurions \implies relegated to higher-orders

- Modification of fermion-vector couplings: $O(p^2)$ and quadratic in spurions

$$i \bar{\chi}_L \gamma^\mu X^\dagger \Sigma (D_\mu \Sigma)^\dagger X \chi_L \text{ standard gauge} = -\xi^2 \frac{e}{c_s} \left(\frac{u_L}{d_L} \right) \gamma^\mu \frac{\tau^3}{2} Z_\mu \left(\frac{u_L}{d_L} \right)$$

They are the first corrections, before the oblique ones!

- S, T parameters do not come before loops: $O(p^2)$ and quartic in spurions

$$\left\langle G_L^{\mu\nu} X^\dagger \Sigma (Y_u - Y_d) G_{R\mu\nu} (Y_u - Y_d)^\dagger \Sigma^\dagger X \right\rangle \Rightarrow S$$

$$\Lambda^2 \left\langle \left(Y_u Y_u^\dagger - Y_d Y_d^\dagger \right) \Sigma^\dagger D_\mu \Sigma \right\rangle^2 \Rightarrow T$$

- LNV introduced by $Z \implies$ need $\zeta \ll \xi \eta \ll 1$

$$\Lambda \bar{\ell}_L X^\dagger \Sigma Y_u Z Y_d^\dagger \Sigma^\dagger X (\ell_L)^c \Rightarrow m_{\nu_L}$$

$$\Lambda \bar{\ell}_R Z (\ell_R)^c \Rightarrow m_{\nu_R}$$

- No see-saw possible: forbid ν Dirac masses by \mathbb{Z}_2 symmetry $\nu_R \longleftrightarrow -\nu_R$ \implies Light ν_Rs: stable, super-weak interactions \implies limits from cosmology
Conclusions

Viable effective theory of Higgs-less EWSB:

- Simultaneous expansion in p and spurions
 - Corresponding loop formalism exists
 - Irrelevant operators in the SM relegated to higher orders
 - First deviations from SM are not oblique corrections, but
 - Non-standard fermion-vector interactions