Effects of Right-handed Neutrino Supermultiplets on Electric Dipole Moments and other low energy observables

Yasaman Farzan

IPM, Tehran, Iran

Y. F., Phys. Rev. D69 (073009) 2004

Y. F., JHEP 02 (2005) 025
Plan of the Talk

Introduction

– Lepton Flavor Violation (LFV) in the MSSM;
– Electric Dipole Moments (EDMs) in the MSSM;
– MSSM with universal SUSY breaking parameters
– Neutrino anomaly \textit{seesaw mechanism}:

right-handed neutrino supermultiplet, neutrino B-term, Y_{ν};
Effects of the neutrino B-term on LFV
(Y. F., PRD69 (2004) 073009, hep-ph/0310055);
Effects of the neutrino B-term on the EDMs
(Y. F., PRD69 (2004) 073009, hep-ph/0310055);
Effects of the neutrino B-term on the Higgs mass parameters
(Y. F., JHEP 02 (2005) 025)

Conclusions
MSSM

\[W = \mathcal{Y}_{l}^{ij} H_d \tilde{l}_{Ri}^c \tilde{L}_j + \mu H_u H_d \]

Without loss of generality: real diagonal \(\mathcal{Y}_{l}^{ij} \)

General form of soft supersymmetry breaking masses

\[V_{soft} = (m_{L}^2)_{\alpha\beta} \tilde{L}_{\alpha} \tilde{L}_{\beta} + (m_{E}^2)_{\alpha\beta} \tilde{l}_{R\alpha} \tilde{l}_{R\beta} + A_{l}^{\alpha\beta} H_d \tilde{l}_{R\alpha} \tilde{L}_{\beta} \]

\(A_l \) and \(Y_l \) create mass terms: \((m_{l_{RiL}}^2)_{\alpha\beta} \tilde{l}_{R\alpha} \tilde{l}_{L\beta} \),

where

\[(m_{l_{RiL}}^2)_{\alpha\beta} = (A_l)_{\alpha\beta} \langle H_d \rangle - \mu \langle H_u \rangle \langle Y_l \rangle \delta_{\alpha,\beta} \]

with \(\frac{\langle H_u \rangle}{\langle H_d \rangle} = \tan \beta \)

Off-diagonal elements are LFV and can induce LFV rare decays.
J. Casas and Ibarra, hep-ph/0109161:

\[\text{Br}(l_\alpha \rightarrow l_\beta + \gamma) \sim \frac{\alpha^3}{G_F} \frac{|(m_L^2)_{\alpha\beta}|^2}{m_{\text{susy}}^8} \tan^2 \beta, \]

and \[\text{Br}(l_\alpha \rightarrow l_\beta + \gamma) \sim \frac{\alpha^3}{G_F^2} \frac{|(A_l)_{\alpha\beta}|^2}{m_{\text{susy}}^4}. \]

Particle Data Group Booklet

\[\text{Br}(\mu \rightarrow e\gamma) < 1.2 \times 10^{-11} \quad \text{Br}(\tau \rightarrow e\gamma) < 2.7 \times 10^{-6} \]

and

\[\text{Br}(\tau \rightarrow \mu\gamma) < 3.1 \times 10^{-7} \]
These bounds can be translated into bounds on the off-diagonal elements.

In particular, for $m_{\text{susy}} \simeq 200$ GeV,

\[
\frac{m^2_{\tilde{L}} e}{m^2_{\text{susy}}} < \text{few} \times 10^{-4} \quad \frac{m^2_{\tilde{R}} e}{m^2_{\text{susy}}} < \text{few} \times 10^{-6} \]

\[
\frac{m^2_{\tilde{L}} \tau}{m^2_{\text{susy}}} < 0.1 \quad \frac{m^2_{\tilde{R}} \tau}{m^2_{\text{susy}}} < \text{few} \times 10^{-2} \quad \frac{m^2_{\tilde{R}} \tau}{m^2_{\text{susy}}} < \text{few} \times 10^{-2} \quad \frac{m^2_{\tilde{L}} \tau}{m^2_{\text{susy}}} < 10^{-2} \]

Universal MSSM

At the GUT scale, \(m_L^2 = m_E^2 = m_0^2 \) and \(A_{ij}^{(l)} = a_0 Y_{ij}^{(l)} \)

Sources of CP-violation within MSSM with Universal Couplings \(\mu \quad a_0 \)

EDM of elementary particles \(\leftrightarrow \) CP-violation

\[
d_e < 1.5 \times 10^{-27} \text{ e cm} \quad d_\mu < 7 \times 10^{-19} \text{ e cm}
\]
\[
d_\tau < 5 \times 10^{-16} \text{ e cm} \quad d_n < 6 \times 10^{-26} \text{ e cm}
\]
For $m_{\text{susy}} \sim 200$ GeV, $d_e < 1.5 \times 10^{-27}$ e cm

[hep-ph/0211283]

\[\text{Im} \mu = 0 \Rightarrow \text{Im} \frac{a_0}{m_{\text{susy}}} \lesssim 0.1 \]

\[\text{Im}a_0 = 0 \Rightarrow \sin \phi_\mu \tan \beta \frac{\tan \beta}{10} \lesssim 10^{-3} \]

In general, there can be a cancellation between the contributions of μ and a_0 to d_e, allowing phases of order of 1.
M. V. Romalis et al., PRL 86 (2001) 2505:

\[d_{Hg} < 2.1 \times 10^{-28} \text{ e cm} \quad \text{90 \%} \]

Combining the bounds on \(d_e \) and \(d_{Hg} \), one finds that such a cancelation is not possible and \(\text{Im}(a_0) \) and \(\phi_\mu \) are indeed very small.

In the following we will assume that \(\mu \) and \(a_0 \) are both real.
Neutrino anomalies: seesaw mechanism

N_1, N_2 and N_3 with $M_1, M_2, M_3 \gg m_{\text{susy}}$

$W = Y^{ij}_l H_d L^c_{Ri} L_j - Y^{ij}_u H_u N_i L_j + \mu H_u H_d +
\frac{1}{2} M^{ij} N_i N_j,$

$Y^{ij}_l = \text{diag}(Y_e, Y_\mu, Y_\tau) \quad M^{ij} = \text{diag}(M_1, M_2, M_3).$

At the GUT scale

$V_{\text{soft}} = m^2_\nu \tilde{N}^\dagger_i \tilde{N}_i + (B M_{ij} \tilde{N}_i \tilde{N}_j/2 + \text{h.c.})$

$- A^{ij}_\nu \tilde{N}_i H_u \tilde{L}_j,$

where $A^{ij}_\nu = a_0 Y^{ij}_\nu$
Neutrino anomalies: Y_ν has large non-diagonal elements
Non-diagonal elements of $Y_\nu \Rightarrow$ LFV left-handed slepton masses

\[
(m_L^2)_{\alpha\beta} = - \sum_k \frac{Y_{\nu}^k Y_{\nu}^k}{16\pi^2} [3m_0^2 + a_0^2] \log \frac{M_{\text{GUT}}^2}{M_k^2}.
\]

As we will see, if B-term is large there will be an additional effect.
Adding three right-handed neutrinos

New sources of CP-violation

\[B_\nu \quad Y_\nu \]

Effect of the phase of B_ν **on EDMs:**

Effect of the phases of Y_ν **on EDMs**
J. R. Ellis, J. Hisano, S. Lola and M. Raidal, Nucl. Phys. B 621, 208 (2002);
J. R. Ellis, J. Hisano, M. Raidal and Y. Shimizu, Phys. Lett. B 528, 86 (2002);
J. R. Ellis, J. Hisano, M. Raidal and Y. Shimizu, Phys. Rev. D 66, 115013 (2002);
J. R. Ellis and M. Raidal, Nucl. Phys. B 643, 229 (2002);
Neutrino B-term: $\frac{1}{2}B_\nu \tilde{N} M \tilde{N}$

Right-handed neutrinos are electroweak singlets so B_ν can be much larger than m_{EW}. In principle it can be as large as M_i.
B_ν gives a correction to the neutrino mass equal to

$$-\frac{g^2}{32\pi^2\cos^2\theta_W} \frac{2B_\nu Y_T \langle H_u \rangle^2}{m_\nu} \sum_j f(y_j) |Z_j Z|^2, \quad f(y_j) = \frac{\sqrt{y_j}[y_j-1-\log(y_j)]}{(1-y_j)^2},$$

where $y_j \equiv m_\nu^2/m_{\tilde{\chi}_j^0}^2$ and $Z_j Z \equiv Z_j 2 \cos \theta_W - Z_j 1 \sin \theta_W$ is the neutralino mixing matrix element that projects out the \tilde{Z} eigenstate from the jth neutralino.

$$Y_T \langle H_u \rangle^2 \frac{Y_\nu}{M} \sim m_\nu \rightarrow B_\nu/m_{susy} < 10^3$$

What if $Y_T \langle H_u \rangle^2 \frac{Y_\nu}{M} \ll m_\nu$?

B-term gives radiative correction to $m_{H_u}^2$ and B_H

⇒ Stronger bound on B_ν

Y. Farzan, JHEP 02 (2005) 025
What is the theoretical prediction for B_ν?

\[\int d^4 \theta (1 + B_\nu \theta^2)(1 + B_\nu^* \bar{\theta}^2)N^\dagger N + \int d^2 \theta MNN \]

$\Rightarrow B_\nu M_i \tilde{N}_i \tilde{N}_i$ with $B_\nu \sim A_\nu \sim m_{\text{susy}}$

One way to have large B-term while other supersymmetric parameters are below TEV:
Let us introduce a field X from the hidden sector and assign it a lepton number equal to 2.

\[\int d^2 \theta XNN \]

Large $\langle \tilde{X} \rangle \Rightarrow$ Large Majorana Mass term

Large $\langle F_X \rangle \Rightarrow$ Large B-term
\[-i \Delta m_{H_u}^2 = 2 \sum_k \int \frac{M_k^2 \text{Re}[B_{\nu} \sum_i (Y_{\nu})_{ki} (A_{\nu}^*)_{ki}] d^4k}{k^2(k^2-M_k^2)^2} = -i 2 \sum_k \text{Re} \left[B_{\nu} \text{Tr}(Y_{\nu} A_{\nu}^*) \right].\]

\[-i \Delta b_H = - \sum_k \int \frac{M_k^2 \text{Tr}[(Y_{\nu})_{ki} (Y_{\nu}^*)_{ki}] \mu d^4k}{k^2(k^2-M_k^2)^2} = \frac{i B_{\nu} \mu \text{Tr}[Y_{\nu} Y_{\nu}^*]}{(4\pi)^2}.\]
Dimensional analysis ⇒ No correction to cubic or quartic terms

\[V = (|\mu|^2 + m^2_{H_u} + \Delta m^2_{H_u})|H^0_u|^2 + (|\mu|^2 + m^2_{H_d})|H^0_d|^2 + [(b_H + \Delta b_H)H^0_u H^0_d + H.C.] + \frac{g^2 + g'^2}{8}(|H^0_u|^2 - |H^0_d|^2)^2. \]

Requiring \(m_Z^2 = (g^2 + g'^2)(\langle H_u \rangle^2 + \langle H_d \rangle^2)/2 \) and \(\partial V/\partial H^0_u = \partial V/\partial H^0_d = 0 \),

we find

\[|\mu|^2 + m^2_{H_d} = |b_H + \Delta b_H| \tan \beta - (m_Z^2/2) \cos 2\beta \]

and

\[|\mu|^2 + m^2_{H_u} + \Delta m^2_{H_u} = |b_H + \Delta b_H| \cot \beta + (m_Z^2/2) \cos 2\beta \]

where \(\tan \beta = \langle H_u \rangle / \langle H_d \rangle \).

Assuming \(|\mu|^2 \sim m^2_{H_u} \sim m^2_{\text{susy}} \), we find

\[|b_H - B_{\nu} \mu \frac{\text{Tr}[Y_{\nu} Y_{\nu}^\dagger]}{16\pi^2}| \sim m^2_{\text{susy}} / \tan \beta \Rightarrow B_{\nu} \frac{\text{Tr}[Y_{\nu} Y_{\nu}^\dagger]}{16\pi^2} < m_{\text{susy}} \]
The one-loop effect is suppressed by $B_{\nu m_{\text{susy}}}/M^2$. However the neutrino B-term can affect the LFV rare decays as well as EDMs through corrections to A_{ℓ} and Δm_{ij}^2.
Diagrams contributing to the slepton masses.

\[m^2_{(2)\alpha\beta} = -2 \sum_k Y_{\nu\alpha}^k Y_{\nu\beta}^k \Re[a_0 B_{\nu}] \frac{\text{Re}[a_0 B_{\nu}]}{(4\pi)^2} \]
Diagram contributing to A_ℓ.

$$-iA_{ij}^i = -ia_0 Y_l^{jj} \delta_{ij} - \frac{i}{(4\pi)^2} Y_l^{jj} (Y_{\nu k}^{kj})^* Y_{\nu}^{ki} B_{\nu}$$
As it is shown in hep-ph/0502022 by E. J. Chun, A. Masiero, A. Rossi and S. K. Vempati, an imaginary B_ν induces an imaginary correction to A_u through a correction to $\langle F^\dagger_{H_u} H_u \rangle$:

$$\delta A_u = \frac{1}{16\pi^2} Y_u \text{Tr}[Y^\dagger_\nu B_\nu Y_\nu].$$
So, \(d_l \propto \text{Im}[\langle A_l \rangle_{ii}] \)
Combining the results

\[\text{Br}(\mu \to e\gamma) < 1.2 \times 10^{-11}, \ \text{Br}(\tau \to e\gamma) < 2.7 \times 10^{-6}, \ \text{Br}(\tau \to \mu\gamma) < 3.1 \times 10^{-7} \]
give
\[\text{Re}(a_0 B^*_\nu) (Y^{\dagger}_\nu Y_\nu)_{\mu e} < \text{few} \times 10^{-4} \]
and
\[\text{Re}(a_0 B^*_\nu) (Y^{\dagger}_\nu Y_\nu)_{\tau e} < 0.1 \]
\[\text{Re}(a_0 B^*_\nu) (Y^{\dagger}_\nu Y_\nu)_{\tau \mu} < \text{few} \times 10^{-2}. \]

However, these bound are only on the off-diagonal.
On the other hand, the dependence of \(b_H \) on \(B_\nu \) is through
\[\sum_{k l} |(Y_\nu)_{k l}|^2 \]
which is larger than maximum \(|(Y_\nu)_{k l}|^2 \).
Thus, bounds from LFV rare decay and the condition of electroweak symmetry
breaking are complementary.

\[d_e < 1.4 \times 10^{-27} \ \text{e cm implies Im}(B_\nu) \sum_i |(Y_\nu)_{ie}|^2/(16\pi^2) < 0.1m_{\text{susy}} \]
which is again complementary to the bound we found
What do we expect, if B-term is the only source of CP-violation?

$$d_\tau/(m_\tau \sum_k |Y_{\nu}^{k\tau}|^2) = d_\mu/(m_\mu \sum_k |Y_{\nu}^{k\mu}|^2) =$$
$$d_e/(m_e \sum_k |Y_{\nu}^{k\ell}|^2)$$

$$d_e \sim 10^{-27} \text{ e cm} \rightarrow d_\mu \sim 10^{-25} \text{ e cm} \text{ which can be tested}$$

in the proposed experiments

(Storage ring of nuFactory)

J. Aysto et. al., hep-ph/0109217
Now let us relax the assumption that μ and a_0 are real.
Then we will have 4 independent complex parameters to fit the EDM data:

Phases of μ and $A_e = a_0 Y_e + Y_e (Y_\nu B_\nu Y_\nu)_{ee}/(16\pi^2)$ give corrections to d_e.

Phases of μ, $A_d = Y_d a_0 = A_s (m_d/m_s)$ and $A_u = a_0 Y_u + Y_u \text{Tr}\{Y_\nu^\dagger B_\nu Y_\nu\}/(16\pi^2)$ give corrections to d_n and d_{Hg}.

This opens the possibility of $\phi_\mu \sim O(1)$.

Y. F., work in progress
Conclusions

The condition of electroweak symmetry breaking \(\rightarrow |b_H - B_\nu \mu \frac{\text{Tr}[Y^\dagger Y]}{16\pi^2}| \sim \frac{m^2_{\text{susy}} \tan \beta}{16\pi^2} \)

An upper bound on \(|B_\nu| \) one or two orders of magnitude stronger than the previous one.

Unlike the bound from radiative correction to \(m_\nu \), this bound does not \(M \).

Even within this bound, the effect of \(B_\nu \) on both LFV left-hand slepton masses \((m^2_L)_{\alpha\beta} \ (\alpha \neq \beta)\) and EDMs can be dominant.

The effect of an imaginary \(B_\nu \) on the EDM of charged lepton, \(l_i \)
\[
d_i \sim 10^{-27} \frac{\text{Im}(B_\nu)}{m_L} Y^\dagger Y \left(\frac{200 \text{ GeV}}{m_L} \right)^2 \frac{m_{l_i}}{m_e} \text{ e cm}
\]

Radiative LFV correction induced due to \(B_\nu \)
\[
m^2_L = -2\frac{\text{Re}(B_\nu a_0)}{16\pi^2} Y^\dagger Y
\]
There are two ways to suppress LFV rare decays:

(I) The off-diagonal elements are much smaller than the diagonal elements

At mass insertion approximation:

\[\text{Br}(l_\alpha \rightarrow l_\beta + \gamma) \sim \frac{\alpha^3}{G_F^2} \frac{|(m^2_L)_{\alpha\beta}|^2}{m^8_{\text{susy}}} \tan^2 \beta \]

(II) The correction to \(m^2_L\) due to \(B_\nu\) is much larger than \(m_{\text{susy}}\).

At this range \(\text{Br}(l_\alpha \rightarrow l_\beta + \gamma) \sim \frac{\alpha^3}{G_F^2 m^4_L} \tan^2 \beta\)

We cannot derive any conclusive bound on \(B_\nu\) only from LFV rare decay.
What about a correction proportional to $|B_\nu|^2$?

Surprisingly, the two diagrams cancel each other.
What about higher loop orders?

The “eyeglasses-diagram.”

This diagram is equal to $|B_\nu|^2 \left[\text{Tr}\{Y_\nu^\dagger Y_\nu\}/16\pi^2 \right]^2$.

Diagrams with a different topology have a different dependence on Y_ν and cannot cancel the effect of the “eyeglasses-diagram.” This demonstrates that the cancellation at one-loop level is completely accidental.