PVLAS experiment:
Measurement of optical properties of quantum vacuum

MARIN KARUZA
representing the PVLAS Collaboration
Università di Trieste and INFN Sezione di Trieste, Italy
PVLAS Collaboration

Trieste
M. Bregant
G. Cantatore
F. Della Valle
M. Karuza
E. Milotti
E. Zavattini

Ferrara
G. di Domenico
G. Zavattini

LNF
R. Cimino

Technical support
S. Marigo (LNL)
A. Zanetti (TS)

LNL
U. Gastaldi
G. Ruoso

Pisa
S. Carusotto
E. Polacco

Marin Karuza – PVLAS Coll.

La Thuile, 16.03.2006
Short introduction to PVLAS

- goal of the PVLAS experiment
- experimental technique

- Recent results
 - IR laser (1064 nm ~ 1 eV photon energy)

- Future
 - photon regeneration
PVLAS Theme and goal

Theme:
Vacuum as a “target”: low energy photon-photon collider
- QED interactions
- other interactions?

Goal:
Measure the *magnetically induced linear birefringence and optical rotation* of the Vacuum element (in practice a gas in the zero-pressure limit)

Possible contributions to macroscopic properties
- photon-photon scattering
- production of: neutral bosons, ?
PVLAS Experimental apparatus
- high sensitivity heterodyne ellipsometer

- measures changes in light polarization due to magneto-optical properties of the sample

- by inserting/removing QWP we can measure rotations/ellipticities

- signal dependence: - magnetic field
 - optical path length in the magnetic field region
PVLAS Experimental apparatus
- high sensitivity heterodyne ellipsometer, main parameters

- magnet
 • dipole, 6 T, temp. 4.2 K, 1 m field zone

- cryostat
 • rotation frequency ~300 mHz, sliding contacts, warm bore to allow light propagation in the interaction zone

- laser
 • 1064 nm, 100 mW, frequency-locked to the F.-P. cavity

- Fabry-Perot optical cavity
 • 6.4 m length, finesse ~100000, optical path in the interaction region ~ 60 km

- heterodyne ellipsometer
 • ellipticity modulator (SOM) and high extinction ($\sim 10^{-7}$) crossed polarisers
 • time-modulation of the effect

- detection chain
 • photodiode with low-noise amplifier

- DAQ
 • demodulated at low frequency and phase-locked to the magnetic field instantaneous direction
 • high sampling frequency direct acquisition
PVLAS Test measurements
- Cotton – Mouton in gas, birefringence

PVLAS Test measurements
- Cotton – Mouton in gas, phase and amplitude information

- Points represent 100 s long data records, various gas pressures, B=5.5 T
- Phase and amplitude information
- All points lie on the physical axis

Marin Karuza – PVLAS Coll.
La Thuile, 16.03.2006
PVLAS IR results
- rotation in vacuum, spectra comparison

magnet off

magnet on
PVLAS IR results

- points represent 100 s long data records
- data taken at 5 T, with 44000 passes in the FP cavity

Note the sign change of the distribution under a QWP axis exchange
$\rho_0 = (3.9 \pm 0.5) \cdot 10^{-12}$ rad/pass

[E. Zavattini et al., hep-ex/0507107, PRL accepted]
PVLAS Discussion on IR results

Diagnostic tests made

- excluded
 - electrical pick-up
 - residual gas pressure
 - mirror coating birefringence
 - polarizer movement (Faraday?)
 - diffusion from magnetised surfaces

- open questions
 - beam pointing instability?
 - presence of a true physical signal?
PVLAS Possible interpretation
- light scalar/pseudoscalar boson production

\[\rho_\phi = g_{\phi\gamma}^2 \frac{2FB_0^2 \omega^2}{\pi m_\phi^4} \sin^2 \left(\frac{m_\phi^2 L}{4\omega} \right) \sin(2\theta) = g_{\phi\gamma}^2 \frac{FB_0^2 L^2}{8\pi} \]

La Thuile, 16.03.2006

PVLAS Possible interpretation
- comparison with previous measurements

\[1.7 \times 10^5 \, \text{GeV} < M_b < 5.6 \times 10^5 \, \text{GeV}\]
\[1 \, \text{meV} < m_b < 1.5 \, \text{meV}\]

BFRT see [R. Cameron et al., Phys. Rev. D 47, 3707 (1993)]

Marin Karuza – PVLAS Coll.

La Thuile, 16.03.2006
PVLAS Mixing
- rotation in gas

\[f_{\text{mix}}(p,M,m) = \frac{1}{4} \left(\frac{BL}{2M} \right)^2 \sin \left(\frac{2p_{\text{gas}}(n_{\text{gas}} - 1)\omega^2}{p_{\text{am}} + m^2} \right) L \]
PVLAS Mixing?
- rotation in gas, IR Data

- subjected to further investigation
- systematic effects subtracted – linear and under control

Marin Karuza – PVLAS Coll.

La Thuile, 16.03.2006
PVLAS Recent developments

- incident photon energy changed
 1064 nm (~1 eV) infrared > 532 nm (~2 eV) green

- 2 runs (60 hours of data acquisition)
 - sensitivity worse than IR

- analysis in progress, effect present

- up to now results are compatible with IR measurements
PVLAS Physical tests

Photon regeneration

- already done at BNL

- to be done with PVLAS apparatus

- ongoing project
 - DESY
PVLAS Photon regeneration scheme

PVLAS parameters

production
1 m
5.5 T
10^{22} photons in cavity

regeneration
0.5 m
2.5 T

counting rate
1 photon/s

magnet, photon regeneration region
detector
PVLAS Conclusions

- we have an unexpected rotation signal whose physical origin has yet to be determined

- up to now, compatibility between results with two different wavelengths (analysis in progress)

- now, IR run: - more photons in cavity
 - different photon source
 - confirmation of previous results?

- near future: - new amagnetic access structure

- not so distant future: - powerful physics test
 (photon regeneration at PVLAS)
PVLAS The End