Coherent Bayesian analysis of inspiral signals

Nelson Christensen1, Renate Meyer2, Christian Röver2, Gianluca Guidi3, and Andrea Viceré3

1Carleton College
Northfield, MN, U.S.A.

2The University of Auckland
Auckland, New Zealand

3Università degli Studi di Urbino
Urbino, Italy
Overview:

1. The Bayesian approach
2. MCMC methods
3. The inspiral signal
4. Priors
5. Example application
The Bayesian approach

- idea: assign probabilities to parameters θ
- pre-experimental knowledge: prior probabilities / -distribution $p(\theta)$
- data model: likelihood $p(y|\theta)$
- application of Bayes’ theorem yields the posterior distribution
 $$p(\theta|y) \propto p(\theta) p(y|\theta)$$
 conditional on the observed data y.
- posterior distribution combines the information in the data with the prior information
MCMC methods - what they do

• Problem -
 \textbf{given}: posterior distribution $p(\theta | y)$ (density, function of θ)
 \textbf{wanted}: mode(s), integrals,...

• what MCMC does:
 simulate random draws from (any) distribution, allowing to approximate
 any integral by sample statistic (e.g. means by averages etc.)

• Monte Carlo integration
MCMC methods - how they work

- **Markov Chain Monte Carlo**
- random walk
- **Markov property**: each step in random walk only depends on previous
- **stationary distribution** is equal to the desired posterior $p(\theta|y)$
- most famous: **Metropolis- (Hastings-) sampler**
 especially convenient: normalising constant factors to $p(\theta|y)$ don’t need to be known.
MCMC methods

• Metropolis-algorithm may also be seen as **optimisation algorithm**: improving steps always accepted, worsening steps sometimes (→ *Simulated Annealing*)

• in fact: purpose often *both finding mode(s) and sampling* from them
The inspiral signal

- measurement: time series (signal + noise) at, say, 3 separate interferometers

- **signal**: chirp waveform; 2.5PN amplitude, 3.5PN phase1,2

- **9 parameters**: masses \((m_1, m_2)\), coalescence time \((t_c)\), coalescence phase \((\phi_0)\), luminosity distance \((d_L)\), inclination angle \((\iota)\), sky location \((\delta, \alpha)\) and polarisation \((\psi)\)

1K.G. Arun et al.: *The 2.5PN gravitational wave polarizations from inspiralling compact binaries in circular orbits*, Class. Quantum Grav. 21, 3771 (2004).

The signal at different interferometers

- **‘local’ parameters** at interferometer I:

 - sky location $(\delta, \alpha) \rightarrow$ altitude ($\vartheta^{(I)}$) / azimuth ($\varphi^{(I)}$)
 - coalescence time (t_c) \rightarrow local coalescence time ($t_c^{(I)}$)
 - polarisation (ψ) \rightarrow local polarisation ($\psi^{(I)}$)

- **noise** assumed **gaussian, coloured**; interferometer-specific spectrum

- **likelihood** computation based on Fourier transforms of data and signal

- **noise independent** between interferometers
 \Rightarrow coherent network likelihood is **product** of individual ones
Prior information about parameters

- different locations / orientations equally likely
- masses: uniform across $[1 \, M_\odot, \, 10 \, M_\odot]$
- events spread uniformly across space: $P(d_L \leq x) \propto x^3$
- but: certain SNR required for detection

- cheap SNR substitute: signal amplitude A
- primarily dependent on masses, distance, inclination: $A(m_1, m_2, d_L, \iota)$
- introduce sigmoid function linking amplitude to detection probability3

3R. Umstätter et al.: Setting upper limits from LIGO on gravitational waves from SN1987a. Poster presentation; also: paper in preparation.
Resulting (marginal) prior density

\[\text{total mass } (m_t = m_1 + m_2) \]

\[\text{luminosity distance } (d_L) \]
Marginal prior density

\[\text{luminosity distance (d_L)} \]

\[\text{inclination angle (i)} \]

N. Christensen, R. Meyer, C. Röver, G. Guidi and A. Viceré: Coherent Bayesian analysis of inspiral signals
Marginal prior densities

individual masses \((m_1, m_2)\)

\[
\begin{array}{cccccc}
2 & 4 & 6 & 8 & 10 \\
\end{array}
\]

(sun masses)

inclination angle \((\iota)\)

\[
\begin{array}{cccccc}
0 & \pi/2 & \pi \\
\end{array}
\]

(radian)
Prior

• prior ‘considers’ **Malmquist effect**

• more realistic settings once **detection pipeline** is set up
MCMC details

- **Reparametrisation**, most importantly: chirp mass m_c, mass ratio η

- **Parallel Tempering**\(^4\)
 several *tempered* MCMC chains running in parallel
 sampling from $p(\theta | y)^{\frac{1}{T_i}}$ for ‘temperatures’ $1 = T_1 \leq T_2 \leq \ldots$

- **Evolutionary MCMC**\(^5\)
 ‘recombination’ steps between chains—motivated by Genetic algorithms

Example application

- simulated data:
 2 M☉ - 5 M☉ inspiral at 30 Mpc distance
 measurements from 3 interferometers:

<table>
<thead>
<tr>
<th></th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHO (Hanford)</td>
<td>8.4</td>
</tr>
<tr>
<td>LLO (Livingston)</td>
<td>10.9</td>
</tr>
<tr>
<td>Virgo (Pisa)</td>
<td>6.4</td>
</tr>
<tr>
<td>network</td>
<td>15.2</td>
</tr>
</tbody>
</table>

- data: 10 seconds (LHO/LLO), 20 seconds (Virgo) before coalescence, noise as expected at design sensitivities

- computation speed: 1–2 likelihoods / second
N. Christensen, R. Meyer, C. Röver, G. Guidi and A. Viceré: *Coherent Bayesian analysis of inspiral signals*
chirp mass (m_c)

mass ratio (η)

individual masses (m_1, m_2)

N. Christensen, R. Meyer, C. Röver, G. Guidi and A. Viceré: *Coherent Bayesian analysis of inspiral signals*
chirp mass (m_c) vs mass ratio (η):

<table>
<thead>
<tr>
<th>Chirp Mass (m_c)</th>
<th>Mass Ratio (η)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.685</td>
<td>0.19</td>
</tr>
<tr>
<td>2.690</td>
<td>0.20</td>
</tr>
<tr>
<td>2.695</td>
<td>0.21</td>
</tr>
<tr>
<td>2.700</td>
<td>0.22</td>
</tr>
<tr>
<td>2.705</td>
<td>0.23</td>
</tr>
<tr>
<td>2.710</td>
<td></td>
</tr>
<tr>
<td>2.715</td>
<td></td>
</tr>
</tbody>
</table>

N. Christensen, R. Meyer, C. Röver, G. Guidi and A. Viceré: *Coherent Bayesian analysis of inspiral signals*
some posterior key figures

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>95% C.I.</th>
<th>True</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chirp mass (m_c)</td>
<td>2.699</td>
<td>(2.692, 2.707)</td>
<td>2.698</td>
<td>M_\odot</td>
</tr>
<tr>
<td>Mass ratio (η)</td>
<td>0.207</td>
<td>(0.192, 0.225)</td>
<td>0.204</td>
<td></td>
</tr>
<tr>
<td>Coalescence time (t_c)</td>
<td>12.3455</td>
<td>(12.3421, 12.3490)</td>
<td>12.3450</td>
<td>s</td>
</tr>
<tr>
<td>Luminosity distance (d_L)</td>
<td>31.4</td>
<td>(17.4, 43.5)</td>
<td>30.0</td>
<td>Mpc</td>
</tr>
<tr>
<td>Inclination angle (ι)</td>
<td>0.726</td>
<td>(0.159, 1.456)</td>
<td>0.700</td>
<td>rad</td>
</tr>
<tr>
<td>Declination (δ)</td>
<td>-0.498</td>
<td>(-0.539, -0.456)</td>
<td>-0.506</td>
<td>rad</td>
</tr>
<tr>
<td>Right ascension (α)</td>
<td>4.657</td>
<td>(4.632, 4.688)</td>
<td>4.647</td>
<td>rad</td>
</tr>
<tr>
<td>Coalescence phase (ϕ_0)</td>
<td></td>
<td></td>
<td>2.0</td>
<td>rad</td>
</tr>
<tr>
<td>Polarisation (ψ)</td>
<td></td>
<td></td>
<td>1.0</td>
<td>rad</td>
</tr>
</tbody>
</table>
MCMC chain 2 — temperature = 2

N. Christensen, R. Meyer, C. Röver, G. Guidi and A. Viceré: Coherent Bayesian analysis of inspiral signals
MCMC chain 3 — temperature = 4

N. Christensen, R. Meyer, C. Röver, G. Guidi and A. Viceré: Coherent Bayesian analysis of inspiral signals
MCMC chain 4 — temperature = 8

N. Christensen, R. Meyer, C. Röver, G. Guidi and A. Viceré: Coherent Bayesian analysis of inspiral signals
Six tempered chains ‘in action’

\[\log(p(\theta|y)) \]

iteration

N. Christensen, R. Meyer, C. Röver, G. Guidi and A. Viceré: Coherent Bayesian analysis of inspiral signals
Outlook

- incorporation into a ‘loose net’ detection pipeline for large mass ratio inspirals
- use information supplied by detection pipeline
- further parameters, e.g. spin effects