F-term uplifted racetrack inflation

Marcin Badziak

Institute of Theoretical Physics, University of Warsaw

19th March 2010

in collaboration with Marek Olechowski
Outline

1. Racetrack inflation
2. Constraints for the Kähler potential
3. F-term uplifted racetrack inflation
KKLT Moduli Stabilization

F-term potential in 4D SUGRA

\[V = e^K \left(K^{I\bar{J}} D_I W D_{\bar{J}} \bar{W} - 3 |W|^2 \right) \]

Kähler potential for the volume modulus

\[K = -3 \ln (T + \bar{T}) \]

For fixed dilaton and CSM fluxes contribute a constant term to the superpotential

\[W = A \]

Introducing non-perturbative correction (e.g. gaugino condensation) to the superpotential

\[W = A + Ce^{-cT} \]

volume modulus can be stabilized at AdS SUSY minimum.

We live in dS space \(\Rightarrow \overline{D3}\)-branes introduced to uplift minimum to dS space:

\[\Delta V = \frac{E}{(T + \bar{T})^2} \]
Moduli stabilization allow for constructing inflationary models inspired by string theory.

Moduli fields can be considered as candidates for the inflaton (moduli inflation).

KKLT potential is too steep (|\eta| > 1) and does not fulfill the slow-roll conditions \(\Rightarrow \) inflation cannot be realized.

Inflation can be realized with the racetrack superpotential:

\[
W = A + Ce^{-cT} + De^{-dT}
\]
Inflation in the vicinity of a saddle point
Axion τ is the inflaton

Fine-tuning
Flux parameter A fine-tuned at the level of 10^{-4}

CMB signatures
- $n_s \lesssim 0.95$
- $r \ll 1$

Blanco-Pillado et al. '04
Racetrack Inflation - Inflection Point Model

Inflation in the vicinity of an **inflection point**

t is the inflaton

Fine-tuning

Fine-tuning of parameters related to the height of the barrier

M.B., Olechowski '08

Avoiding overshooting problem requires fine-tuning at the level of 10^{-8}

CMB signatures

- $n_s \gtrsim 0.93$
- $r \ll 1$

Linde, Westphal '07
In both racetrack inflation models SUSY is broken explicitly by $D3$-branes. Most of the existing uplifting mechanisms have not been applied to inflationary models.

Goal

Construct racetrack inflation models in a fully supersymmetric framework with the hidden sector matter field as a source of uplifting and SUSY breaking.
In both racetrack inflation models SUSY is broken explicitly by $D3$-branes.

Most of the existing uplifting mechanisms have not been applied to inflationary models.

Goal

Construct racetrack inflation models in a fully supersymmetric framework with the hidden sector matter field as a source of uplifting and SUSY breaking.
The maximal value of η is related to the curvature of the Kähler manifold spanned by the scalar fields appearing in the theory.

$MB, Olechowski '08; Covi et al. '08$

The necessary condition for $|\eta| \ll 1$:

$$R(f^i) < \frac{2}{\hat{G}^2} < \frac{2}{3}$$

where $G = K + \log |W|^2$ and $\hat{G}^2 \equiv \sqrt{G_i G_i} = 3 + e^{-G} V$

$R(f^i) \equiv R_{ijpq} f^i f^j f^p f^q$ is the sectional curvature along the direction of the SUSY breaking ($f_i \equiv G_i / \hat{G}^2$ is the unit vector defining that direction).

Note: $\hat{G}^2 = 3$ for Minkowski, $\hat{G}^2 > 3$ for de Sitter.

The above condition can be used to eliminate some models even without specifying the superpotential!
In the one field case the necessary condition simplifies:

\[R_T < \frac{2}{G^2} < \frac{2}{3} \]

Kähler potential for the volume modulus:

\[K = -3 \ln(T + \bar{T}) \]

The curvature scalar for the volume modulus takes the form:

\[R_T = \frac{2}{3} \]

The trace of the \(\eta \)-matrix is constant and negative: \(MB, Olechowski '08 \)

\[\text{Tr}(\hat{\eta}) = -\frac{4}{3} \]

\(\eta \leq -2/3 \Rightarrow \text{slow-roll conditions violated!} \)

How is it possible that racetrack inflation works?

Uplifting from \(\overline{D3} \)-branes is non-supersymmetric and gives additional, positive contribution to \(\text{Tr}(\hat{\eta}) \)
In the one field case the necessary condition simplifies:

\[R_T < \frac{2}{G^2} < \frac{2}{3} \]

Kähler potential for the volume modulus:

\[K = -3 \ln(T + \bar{T}) \]

The curvature scalar for the volume modulus takes the form:

\[R_T = \frac{2}{3} \]

The trace of the \(\eta \)-matrix is constant and negative: \(MB, Olechowski '08 \)

\[\text{Tr}(\hat{\eta}) = -\frac{4}{3} \]

\(\eta \leq -2/3 \Rightarrow \text{slow-roll conditions violated!} \)

How is it possible that racetrack inflation works?

Uplifting from \(\overline{D3} \)-branes is non-supersymmetric and gives additional, positive contribution to \(\text{Tr}(\hat{\eta}) \).
In the one-field case the necessary condition simplifies:

\[R_T < \frac{2}{G^2} < \frac{2}{3} \]

Kähler potential for the volume modulus:

\[K = -3 \ln(T + \bar{T}) \]

The curvature scalar for the volume modulus takes the form:

\[R_T = \frac{2}{3} \]

The trace of the \(\eta \)-matrix is constant and negative: \textit{MB, Olechowski '08}

\[\text{Tr}(\hat{\eta}) = -\frac{4}{3} \]

\(\eta \leq -2/3 \Rightarrow \text{slow-roll conditions violated!} \)

How is it possible that racetrack inflation works?

Uplifting from \(\overline{D3} \)-branes is non-supersymmetric and gives additional, positive contribution to \(\text{Tr}(\hat{\eta}) \)
For the no-scale Kähler potential

\[K = -3 \ln(T + \bar{T} - |\Phi|^2) \]

the Kähler manifold is a maximally symmetric coset space with a constant curvature \(R(f^i) = 2/3 \)

\(\text{Gomez-Reino, Scrucca '06} \)

Necessary condition for slow-roll inflation violated \(\Rightarrow \) Racetrack inflation cannot be uplifted for any kind of coupling between the volume modulus and the matter field in the superpotential
For the no-scale Kähler potential

\[K = -3 \ln(T + \bar{T} - |\Phi|^2) \]

the Kähler manifold is a maximally symmetric coset space with a constant curvature \(R(f^i) = 2/3 \)

\[\text{Gomez-Reino, Scrucca '06} \]

Necessary condition for slow-roll inflation violated \(\Rightarrow \) Racetrack inflation cannot be uplifted for any kind of coupling between the volume modulus and the matter field in the superpotential
For the separable Kähler potential:

\[K = K^{(T)}(T, \overline{T}) + K^{(\Phi)}(\Phi, \overline{\Phi}) \]

the necessary condition for slow-roll inflation reduces to:

\[R_T \Theta_T^4 + R_\Phi \Theta_\Phi^4 < \frac{2}{G^2} \]

\(R_i \) are the scalar curvatures of the one dimensional submanifolds associated with each of the fields

\(\Theta_i^2 \equiv G_{ii} f^i f^\dagger \) parameterize SUSY breaking and satisfy \(\sum_i \Theta_i^2 = 1 \).
Polonyi Uplifting

Volume modulus coupled to canonically normalized matter field:

\[K = -3 \ln(T + \bar{T}) + \Phi \bar{\Phi} \]

\[R_\Phi = 0 \] so the necessary condition for slow-roll inflation is:

\[\Theta_T^4 < \frac{3}{\hat{G}^2} \]

If the matter field dominates SUSY breaking during inflation \((\Theta_T^2 \ll 1)\) then \(F\)-term uplifted racetrack inflation is possible.

Superpotential

\[W = A + Ce^{-cT} + De^{-dT} - \mu^2 \Phi \]

is sufficient to uplift both racetrack inflation models!
Volume modulus coupled to canonically normalized matter field:

\[K = -3 \ln (T + T) + \Phi \Phi \]

\(R_\Phi = 0 \) so the necessary condition for slow-roll inflation is:

\[\Theta^4_T < \frac{3}{\tilde{G}^2} \]

If the matter field dominates SUSY breaking during inflation (\(\Theta^2_T \ll 1 \)) then \(F \)-term uplifted racetrack inflation is possible.

Superpotential

\[W = A + Ce^{-cT} + De^{-dT} - \mu^2 \Phi \]

is sufficient to uplift both racetrack inflation models!
Polonyi Uplifting of Inflection Point Inflation

\[\Theta^2_\phi \gg \Theta^2_T \Rightarrow \Phi \text{ dominates SUSY breaking} \]
(during and after inflation)

\(\phi \) is the main component of the inflaton

Fine-tuning

Fine-tuning is not strictly related to the height of the barrier

Fine-tuning at the level of \(10^{-3} \Rightarrow 5 \text{ orders of magnitude weaker than in the original model!} \)

CMB signatures

\(n_s \gtrsim 0.93 \) not altered by \(F \)-term uplifting

but for some sets of parameters isocurvature perturbations may be produced
Polonyi Uplifting of Saddle Point Inflation

All 4 fields are involved in the inflationary dynamics

\[\Theta^2_\Phi \gg \Theta^2_T \Rightarrow \Phi \text{ dominates SUSY breaking (during and after inflation)} \]

\(\theta (\text{Im} \Phi) \) is the main component of the inflaton

Fine-tuning

Fine-tuning at the level of \(10^{-3} \)
(slightly weaker than in the original model)

CMB signatures

\(n_s \lesssim 0.95 \) not altered by \(F \)-term uplifting

Summary of Polonyi uplifting

Volume modulus no longer the inflaton but fine-tuning reduced
Polonyi Uplifting of Saddle Point Inflation

All 4 fields are involved in the inflationary dynamics

\[\Theta_\phi^2 \gg \Theta_T^2 \Rightarrow \Phi \text{ dominates SUSY breaking (during and after inflation)} \]

\[\theta \ (\text{Im} \Phi) \text{ is the main component of the inflaton} \]

Fine-tuning

Fine-tuning at the level of 10^{-3} (slightly weaker than in the original model)

CMB signatures

\[n_s \lesssim 0.95 \text{ not altered by } F\text{-term uplifting} \]

Summary of Polonyi uplifting

Volume modulus no longer the inflaton but fine-tuning reduced
The volume modulus coupled to quantum corrected O’Raifeartaigh model:

Modified Kähler potential

\[K = -3 \ln(T + \bar{T}) + \Phi \bar{\Phi} - \frac{(\Phi \bar{\Phi})^2}{\Lambda^2}, \quad \Lambda \ll 1 \]

\[R_\Phi = \frac{-4}{\Lambda^2(1 - 4|\Phi|^2/\Lambda^2)^3} < 0 \]

Superpotential

\[W = A + Ce^{-cT} + De^{-dT} - \mu^2 \Phi \]

SUSY breaking minimum occurs at \(|\Phi| \sim \Lambda^2 \ll 1 \)
O’uplifting - Decoupling of the Matter Field

The mass matrix at $\tau = \theta = 0$ in the limit $\phi \ll \Lambda \ll 1$:

$$
\begin{pmatrix}
m^{2}_{tt} & m^{2}_{t\tau} & m^{2}_{t\phi} & m^{2}_{t\theta} \\
m^{2}_{t\tau} & m^{2}_{\tau\tau} & m^{2}_{\tau\phi} & m^{2}_{\tau\theta} \\
m^{2}_{t\phi} & m^{2}_{\tau\phi} & m^{2}_{\phi\phi} & m^{2}_{\phi\theta} \\
m^{2}_{t\theta} & m^{2}_{\tau\theta} & m^{2}_{\phi\theta} & m^{2}_{\theta\theta}
\end{pmatrix}
\sim
\begin{pmatrix}
\Lambda^{0} & 0 & \phi m^{2}_{\phi\phi} & 0 \\
0 & \Lambda^{0} & 0 & \Lambda^{0} \\
\phi m^{2}_{\phi\phi} & 0 & \Lambda^{-2} & 0 \\
0 & \Lambda^{0} & 0 & \Lambda^{-2}
\end{pmatrix}
$$

- the matter field is heavier than the volume modulus
- the mixing between the matter field and the volume modulus is strongly suppressed

The matter field is decoupled from the inflationary dynamics
O’uplifting - Decoupling of the Matter Field

The mass matrix at $\tau = \theta = 0$ in the limit $\phi \ll \Lambda \ll 1$:

$$
\begin{pmatrix}
 m_{tt}^2 & m_{t\tau}^2 & m_{t\phi}^2 & m_{t\theta}^2 \\
 m_{t\tau}^2 & m_{\tau\tau}^2 & m_{\tau\phi}^2 & m_{\tau\theta}^2 \\
 m_{t\phi}^2 & m_{\tau\phi}^2 & m_{\phi\phi}^2 & m_{\phi\theta}^2 \\
 m_{t\theta}^2 & m_{\tau\theta}^2 & m_{\phi\theta}^2 & m_{\theta\theta}^2
\end{pmatrix}
\sim
\begin{pmatrix}
 \Lambda^0 & 0 & \phi m_{\phi\phi}^2 & 0 \\
 0 & \Lambda^0 & 0 & \Lambda^0 \\
 \phi m_{\phi\phi}^2 & 0 & \Lambda^{-2} & 0 \\
 0 & \Lambda^0 & 0 & \Lambda^{-2}
\end{pmatrix}
$$

- the matter field is heavier than the volume modulus
- the mixing between the matter field and the volume modulus is strongly suppressed

The matter field is decoupled from the inflationary dynamics
O’uplifting of Racetrack Inflation Models

- Φ is almost constant during inflation
- SUSY breaking dominated by the matter field ($\Theta_\Phi > \Theta_T$)
- matter field F-term provides effective uplifting term $|F_\Phi|^2 \sim 1/t^3$
- O’uplifted racetrack models resemble the original ones
- Volume modulus is the inflaton but SUSY is broken spontaneously by the matter field
Racetrack inflation can be realized in a fully supersymmetric framework with the matter field F-term as a source of SUSY breaking and uplifting.

Details of the inflationary scenario depend on the choice of the matter field sector:

- **Polonyi uplifting** - the volume modulus is no longer the inflaton but fine-tuning significantly reduced.
- **O’uplifting** - the matter field is decoupled from the inflationary dynamics even though it dominates SUSY breaking during and after inflation (i.e. $|F_\phi| \gg |F_T|$).