POLARBeaR
POLARization of the Background Radiation

Josquin Errard
Ph.D. student
laboratoire Astroparticule & Cosmologie (Paris)

45th Rencontres de Moriond, March 2010
POLARBeaR collaboration

University of California at Berkeley
Kam Arnold
Daniel Flannigan
William Holzapfel
Jacob Howard
Zigmund Kermish
Adrian Lee P.I.
Marius Lungu
Mike Myers
Roger O'Brient
Erin Quealy
Christian Reichardt
Paul Richards
Chase Shimmin
Bryan Steinbach
Huan Tran †
Oliver Zahn

Lawrence Berkeley National Lab
Julian Borrill
Christopher Cantalupo
Theodore Kisner
Eric Linder
Helmuth Spieler

University of Colorado at Boulder
Aubra Anthony
Nils Halverson

University of California at San Diego
David Boettger
Brian Keating
George Fuller
Nathan Miller
Hans Paar
Ian Schanning
Meir Shimon

Imperial College
Andrew Jaffe
Daniel O'Dea

Laboratoire Astroparticule & Cosmologie
Josquin Errard
Radek Stompor

KEK
Masashi Hasumi
Haruki Nishino
Takayuki Tomaru

McGill University
Peter Hyland
Matt Dobbs

Cardiff University
Peter Ade
Carole Tucker

J.Errard (APC), 45th Rencontres de Moriond, March 2010
Introduction
Gravitational waves from inflation → probe the first instant of the Universe

design → ratio tensor-to-scalar \(r \sim 0.025 \)

High fidelity detection of E-modes

B-modes have not been detected yet

Probe the B-modes from gravitational lensing
→ constraint on the total neutrino mass
→ early action of dark energy

4' beams → entire angular scale

from Bicep 2 years, Chiang et al., 2009.
POLARBeaR concept

sensitivity

→ 1274 TES bolometers @ 150 GHz

→ Switch focal plane for 90, 220 GHz

systematic errors control

→ small beam: reduced beam systematics

→ Multiple Polarization Modulations using Sky Rotation (Chile) and Half Wave Plate (HWP)

→ Low sidelobe optics

→ Sky Patches Coordinated with QUIET

J. Errard (APC), 45th Rencontres de Moriond, March 2010
POLARBeaR deployment

→ telescope assembly done

→ lab tests for the cryostat (check for detector performance, NET measurement, etc.)

→ Spring 2010 : testing phase at Cedar Flat, California

→ November 2010 : Chile deployment
POLARBeaR design

- Primary mirror
- Primary guard ring
- Inner ground shield
- Receiver
- Secondary mirror
- Azimuth bearing
- Elevation bearing

3.6 m
POLARBeaR design

- Cryogenics (use of pulse-tube cooler)
- Cold reimaging optics
- Focal plane
- Rotating HWP (sapphire modulating the incoming polarization)
POLARBeaR focal plane

→ 2 Wafers at Cedar Flat California

→ 7 Hexagonal wafers in Chile

→ 637 Pixels/1274 bolometers @ 150 GHz

→ NEQ/U = 20 K s^{1/2}

J. Errard (APC), 45th Rencontres de Moriond, March 2010
POLARBeaR focal plane

Bias and readout wires

2 wafers for Cedar Flat, California
POLARBeaR pixel

J. Errard (APC), 45th Rencontres de Moriond, March 2010
POLARBeaR
Dfmux readout

capacitors/inductors

FPGA-based Oscillator-Demodulators

squids

J. Errard (APC), 45th Rencontres de Moriond, March 2010
POLARBeaR HWP

Single plate Sapphire
AR coated
~70K
Designed for both continuous and stepped rotation
Ball bearing
Belt driven / stepper motor
Optical encoder readout
~ arcsec repeatability for stepped HWP

J. Errard (APC), 45th Rencontres de Moriond, March 2010
\[TOD(t) = C \left[I - \epsilon Q \cos(4\rho(t) - 2\alpha) + \epsilon U \sin(4\rho(t) - 2\alpha) \right] \]
POLARBeaR groundshielding

Goal: Ground must be suppressed by $\sim 10^9$
- Cylindrically symmetric
- Curved panels
- Extra tall to shield mountains

J. Errard (APC), 45th Rencontres de Moriond, March 2010
POLARBeaR systematic errors control

J. Errard (APC), 45th Rencontres de Moriond, March 2010
POLARBeaR systematic errors

- Foregrounds
- Ghost reflections
- Band mismatch
- HWP Synchronous Signals
- Array temperature stability
- Atmosphere
- Polarization calibration
- Ground/sidelobes
- Telescope flexure
- Beam distortions
- Choice of observed patches, multifrequency
- Simulation/subtraction routines
- Lab calibration, polarized objects on the sky (crab nebula)
- Scan strategy
- HWP
- Small beam size
- Beam measurement
POLARBeaR scan strategy

Each hour:
- EL1 → EL2
- Scan in AZ, fixed EL ~ 1 hour
- Re-center scan each hour
- Choose centers for uniformity
- Choose HWP stepping scheme
- Scans of Planets (Jupiter, Mars) and sky
dips for calibration
Foregrounds and Scan Regions

→ Scan is targeted at low dust contrast regions as low as ~2μK intensity

→ 90, 150 & 220 GHz bands

→ Patches coordinated with QUIET
conclusion
POLARBeaR Chile version summary

<table>
<thead>
<tr>
<th>Frequencies</th>
<th>90/150/220 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angular resolutions</td>
<td>7' : 90 GHz</td>
</tr>
<tr>
<td></td>
<td>4' : 150 GHz</td>
</tr>
<tr>
<td></td>
<td>2.7' : 220 GHz</td>
</tr>
<tr>
<td>Field centers and sizes</td>
<td>Coord w/ QUIET</td>
</tr>
<tr>
<td></td>
<td>1000 deg2 total</td>
</tr>
<tr>
<td>Detector type</td>
<td>Bolometer/TES</td>
</tr>
<tr>
<td>Instrument NEQ/U</td>
<td>360/\sqrt{1288/4} = 20 K s$^{1/2}$</td>
</tr>
<tr>
<td>Telescope type</td>
<td>Gregorian/lenses</td>
</tr>
<tr>
<td>Polarization Modulations</td>
<td>HWP, sky rotation</td>
</tr>
<tr>
<td>Location</td>
<td>Atacama</td>
</tr>
<tr>
<td>Observation start date</td>
<td>2010</td>
</tr>
<tr>
<td>Planned observing time</td>
<td>1000/250 elapsed/effective days</td>
</tr>
<tr>
<td>Projected limit on r</td>
<td>0.025 95% c.l.</td>
</tr>
</tbody>
</table>
Thank you for your attention
STOP
POLARBeaR design

J. Errard (APC), 45th Rencontres de Moriond, March 2010
<table>
<thead>
<tr>
<th>Systematic</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crosspolar beam</td>
<td>E ↔ B</td>
</tr>
<tr>
<td>Polarization angle errors</td>
<td>E ↔ B</td>
</tr>
<tr>
<td>Pointing errors (on Q/U)</td>
<td>E ↔ B</td>
</tr>
<tr>
<td>Main beam asymmetry (before differencing)</td>
<td>dT ↔ B</td>
</tr>
<tr>
<td>Sidelobes</td>
<td>dT ↔ B</td>
</tr>
<tr>
<td>Instrumental polarization</td>
<td>dT ↔ B</td>
</tr>
<tr>
<td>Relative calibration errors</td>
<td>dT ↔ B</td>
</tr>
<tr>
<td>Pointing errors before differencing</td>
<td>T ↔ B</td>
</tr>
<tr>
<td>Gain drift before differencing</td>
<td>T ↔ B</td>
</tr>
<tr>
<td>Optics and spillover T variations</td>
<td>dT_{opt} ↔ B</td>
</tr>
<tr>
<td>Scan modulated cold stage variations</td>
<td>dT_{cs} ↔ B</td>
</tr>
<tr>
<td>Band shape errors, including modulator effects</td>
<td>foregrounds ↔ B</td>
</tr>
<tr>
<td>Others?</td>
<td>?</td>
</tr>
</tbody>
</table>
Comment l'Univers a commencé ? Avec une période d'inflation ?

- curvature \(\sim 0 \)
- Universe is isotropic
- Origine for the big structures in the Universe
- magnetic monopoles
J. Errard (APC), 45th Rencontres de Moriond, March 2010

\[
\frac{d\sigma}{d\Omega} = \frac{3\sigma_T}{8\pi} \left| \vec{\epsilon} \cdot \vec{\epsilon}' \right|^2
\]

Density, Vorticity, Gravity Waves

Quadrupole Anisotropy

Thomson Scattering

Linear Polarization
Gravitational waves
(+ lensing + systematics + ...)

Symmetry break \(\rightarrow \) \(\text{rot}(B) \neq 0 \)

E-mode

B-mode
\[\Theta \equiv \frac{\Delta T}{T} (\theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{lm} Y_l^m (\theta, \phi) \]

<table>
<thead>
<tr>
<th>100% Q</th>
<th>100% U</th>
<th>100% V</th>
</tr>
</thead>
<tbody>
<tr>
<td>[+Q]</td>
<td>[+U]</td>
<td>[+V]</td>
</tr>
<tr>
<td>[y]</td>
<td>[y]</td>
<td>[y]</td>
</tr>
<tr>
<td>[x]</td>
<td>[x]</td>
<td>[x]</td>
</tr>
<tr>
<td>[Q > 0; U = 0; V = 0] [(a)]</td>
<td>[Q = 0; U > 0; V = 0] [(c)]</td>
<td>[Q = 0; U = 0; V > 0] [(e)]</td>
</tr>
<tr>
<td>[Q < 0; U = 0; V = 0] [(b)]</td>
<td>[Q = 0, U < 0, V = 0] [(d)]</td>
<td>[Q = 0; U = 0; V < 0] [(f)]</td>
</tr>
</tbody>
</table>

\[Q(\hat{n}) + iU(\hat{n}) = \sum_{lm} (2a_{lm} \ Y_{lm}(\hat{n})) \]

\[Q(\hat{n}) - iU(\hat{n}) = \sum_{lm} (-2a_{lm} \ Y_{lm}(\hat{n})) \]

\[E a_{lm} = -\frac{2a_{lm} + \frac{-2a_{lm}}{2}}{2} \]

\[B a_{lm} = \frac{i \ Y_{lm} - \frac{-2a_{lm}}{2}}{2} \]

\[\langle E a_{lm} E a_{l'm'} \rangle = \delta_{ll'} \delta_{mm'} C_{l}^{EE} \]

\[\langle a_{lm} E a_{l'm'} \rangle = \delta_{ll'} \delta_{mm'} C_{l}^{TE} \]

\[\langle B a_{lm} B a_{l'm'} \rangle = \delta_{ll'} \delta_{mm'} C_{l}^{BB} \]

J. Errard (APC), 45th Rencontres de Moriond, March 2010
POLARBeaR performance

\((l+1)C_l/2\pi (\mu K^2) \)

- Synchrotron
- Dust
- Noise
- 150 GHz
- 220 GHz

\(l \) vs. \(\log_{10} C_l \)

J. Errard (APC), 45th Rencontres de Moriond, March 2010
POLARBEAR Detector performance

Polarization Purity

- Polarizer Angle (degrees)
- Response to chopped load (arb)
- Fit: $(1+\delta) \cdot A \cdot \cos^2(\pi/180(\text{angle} - q)) + h$
- A, q depend on setup
- $\delta = 0.019$

Receiver Spectrum

- Frequency (GHz)
- Transmittance
- Atmosphere
- Design
- Measured

Beam map

- $\tan(\theta) \cos(\phi)$
- $\tan(\theta) \sin(\phi)$
- E-Plane
An example of **POLARBeaR** systematic error: the atmosphere contamination.

Kolmogorov turbulences

\[(L_0, L_i, \ldots)\]

Wind

(wind speed, profile)

Water vapor distribution

\((C_0, T_0, z_0, \ldots)\)

J. Errard (APC), 45th Rencontres de Moriond, March 2010
POLARBeaR collaboration
POLARBeaR collaboration
POLARBeaR collaboration
POLARBeaR collaboration