Planck-scale induced birefringence and the CMB

Giulia Gubitosi

University of Rome “Sapienza”

45th Rencontres de Moriond March 2010

G. Gubitosi, L. Pagano, G. Amelino-Camelia, A. Melchiorri and A. Cooray,
Modified dispersion relations

quantum spacetime \leadsto “quantum” spacetime symmetries

\leadsto Dispersion relation modifications governed by the Planck scale $[E_p \approx 10^{28} \text{eV}]$

$$E^2 = p^2 + m^2 + \Delta_{QG}(p, m, E_p)$$

(with $\Delta_{QG} \xrightarrow{E_p \to \infty} 0$ and $\Delta_{QG} \xrightarrow{p \to 0} 0$)

First-order correction to massless particles dispersion relation

$$E = p + \eta \frac{p^2}{E_P}$$

(η can be either positive or negative)
Orthogonal polarization states of photons can behave differently:

\[E_\pm \approx p + \eta_\pm \frac{p^2}{E_P} \]

If the polarization states are left/right circular and \(\eta_+ = -\eta_- \)

→ The two helicity states of electromagnetic waves have different phase velocities

\[\vec{E}_\pm = \text{Re} \left((\hat{e}_1 \pm i\hat{e}_2) e^{i(\omega_\pm t - \vec{k} \cdot \vec{x})} \right) \]

→ linearly polarized radiation rotates its polarization vector during propagation

⇒ \textit{in-vacuo} birefringence

(as for light propagation through materials with chiral molecules, as sugar and quartz)

- R.C. Myers, M.Pospelov, PRL 90 (2003) 211601
Effective field theory for in-vacuo birefringence

Modifications of photons dispersion relation of the form $\frac{p^2}{E_{Pl}}$ can be generated by an effective field theory with mass-dimension five corrections to the Lagrangian of electrodynamics

Myers-Pospelov model: [R.C. Myers, M.Pospelov, PRL 90 (2003) 211601]

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2 E_{Pl}} n^\alpha F_{\alpha\delta} n^\sigma \partial_\sigma (n_\beta \varepsilon^{\beta\delta\gamma\lambda} F_{\gamma\lambda})$$

where n^α is an external four-vector (Lorentz invariance violated)
This is the only admissible correction term under a few simple assumptions
(quadratic, gauge invariant, one more derivative than kinetic term, Lorentz invariant (except for n^α), not reducible to lower-dimension operators, nor to a total derivative)
Myers-Pospelov model

MP assumed pure-time vector $n_\alpha = (n_0, 0, 0, 0)$:

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{\xi}{2E_p} \varepsilon^{ijkl} F_{0j} \partial_0 F_{kl} \quad \left[\xi \equiv n_0^3 \right]$$

→ violated invariance under boost transformation
preserved space isotropy

Quantum gravity intuition: ξ roughly of order one

Several astrophysical analyses on observable features of this model

→ are CMBP data sensitive to the Planck scale?
Myers-Pospelov model

MP assumed pure-time vector $n_\alpha = (n_0, 0, 0, 0)$:

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{\xi}{2E_p} \varepsilon^{jkl} F_{0j} \partial_0 F_{kl} \quad [\xi \equiv n_0^3]$$

→ violated invariance under boost transformation
preserved space isotropy

Quantum gravity intuition: ξ roughly of order one

Several astrophysical analyses on observable features of this model

→ are CMBP data sensitive to the Planck scale?
Birefringence emerging from MP Lagrangian

Modified Maxwell equations

\[\nabla \cdot \vec{B} = 0 \quad \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \quad \nabla \times \vec{B} = \frac{\partial \vec{E}}{\partial t} + \frac{2\xi}{E_p} \frac{\partial^2 \vec{B}}{\partial t^2} \quad \nabla \cdot \vec{E} = 0 \]

Dispersion law:

\[\omega_{\pm} = p \left(1 \pm \frac{\xi}{E_p} p \right) \]

→ Polarization rotation angle (if radiation initially linearly polarized):

\[\alpha(T) = 2 \frac{\xi}{E_p} p^2 T \]
CMB photons are known to be $\sim 10\%$ linearly polarized

- free streaming toward us since when the universe was ~ 350000 yr old
 - large accumulation of the polarization rotation effect
- α depends on energy \rightarrow must consider energy redshift
 \[\omega(z) = (1 + z)\omega(0) \]

\[
\alpha(z) = 2 \frac{\xi}{E_p} \frac{p_0^2}{H_0} \int_0^z \frac{(1+z')}{\sqrt{\Omega_m(1+z')^3 + \Omega_\Lambda}} \, dz'
\]

[assuming standard Λ-CDM cosmological model]
Measuring rotation

Polarization can be decomposed into “Electric” and “Magnetic” modes:

\[
E(\hat{n}) = \sum_{lm} E_{lm} Y_{lm}(\hat{n}) \quad \text{even under parity}
\]

\[
B(\hat{n}) = \sum_{lm} B_{lm} Y_{lm}(\hat{n}) \quad \text{odd under parity}
\]

Density perturbations are scalars → can produce only E-modes of polarization

Rotation of original polarization generates B-modes
Cross-Correlation Power Spectra

→ tool of analysis: cross-correlation power spectra

\[C_{l}^{XY} = \frac{1}{2l+1} \sum_{m} < X_{lm}^{*} Y_{lm} > , \quad X, Y = T, E, B \]

if a rotation occurs:

\[
\begin{align*}
C_{l}^{EE} &= \tilde{C}_{l}^{EE} \cos^2(2\alpha) + \tilde{C}_{l}^{BB} \sin^2(2\alpha) \\
C_{l}^{BB} &= \tilde{C}_{l}^{EE} \sin^2(2\alpha) + \tilde{C}_{l}^{BB} \cos^2(2\alpha) \\
C_{l}^{EB} &= \frac{1}{2} \left(\tilde{C}_{l}^{EE} - \tilde{C}_{l}^{BB} \right) \sin(4\alpha) \\
C_{l}^{TE} &= \tilde{C}_{l}^{TE} \cos(2\alpha) \\
C_{l}^{TB} &= \tilde{C}_{l}^{TE} \sin(2\alpha)
\end{align*}
\]
Cross-Correlation Power Spectra

→ tool of analysis:
cross-correlation power spectra

\[C_{l}^{XY} = \frac{1}{2l + 1} \sum_{m} < X_{lm}^* Y_{lm} >, \quad X, Y = T, E, B \]

if a rotation occurs:

\[C_{l}^{EE} = \tilde{C}_{l}^{EE} \cos^2 (2\alpha) + \tilde{C}_{l}^{BB} \sin^2 (2\alpha) \]
\[C_{l}^{BB} = \tilde{C}_{l}^{EE} \sin^2 (2\alpha) + \tilde{C}_{l}^{BB} \cos^2 (2\alpha) \]
\[C_{l}^{EB} = \frac{1}{2} \left(\tilde{C}_{l}^{EE} - \tilde{C}_{l}^{BB} \right) \sin (4\alpha) \]
\[C_{l}^{TE} = \tilde{C}_{l}^{TE} \cos (2\alpha) \]
\[C_{l}^{TB} = \tilde{C}_{l}^{TE} \sin (2\alpha) \]
Effects of rotation on power spectra

BLACK: standard spectra
RED: spectra resulting from a total rotation of 30°

Figure: EE, TE, EB and TB spectra (from top to bottom and left to right)
Analysis on recent experiments data

Data from WMAP5 (94 GHz) and Boomerang (145 GHz)
· E. Komatsu et al. [WMAP Collaboration], arXiv:astro-ph/0803.0547
· C. J. MacTavish et al., arXiv:astro-ph/0507503

- α is energy-dependent, we cannot give a WMAP+BOOMERANG joint estimation on it, but a joint estimation is useful for ξ, which does not depend on energy.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>$\alpha \pm \sigma(\alpha)$</th>
<th>$\xi \pm \sigma(\xi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMAP (94 GHz)</td>
<td>-1.6 \pm 2.1</td>
<td>-0.09 \pm 0.12</td>
</tr>
<tr>
<td>BOOMERanG (145 GHz)</td>
<td>-5.2 \pm 4.0</td>
<td>-0.123 \pm 0.096</td>
</tr>
<tr>
<td>WMAP+BOOMERanG</td>
<td>-</td>
<td>-0.110 \pm 0.075</td>
</tr>
</tbody>
</table>

$[\alpha \propto \frac{\xi}{E^p_r}]$

At 95% confidence level:

$-0.260 < \xi < 0.040$

First limit on ξ in CMB reference frame
Analysis on recent experiments data

Data from WMAP5 (94 GHz) and Boomerang (145 GHz)
- C. J. MacTavish et al., arXiv:astro-ph/0507503

- \(\alpha \) is energy-dependent, we cannot give a WMAP+BOOMERANG joint estimation on it, but a joint estimation is useful for \(\xi \), which does not depend on energy.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>(\alpha \pm \sigma(\alpha))</th>
<th>(\xi \pm \sigma(\xi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMAP (94 GHz)</td>
<td>-1.6 (\pm) 2.1</td>
<td>-0.09 (\pm) 0.12</td>
</tr>
<tr>
<td>BOOMERanG (145 GHz)</td>
<td>-5.2 (\pm) 4.0</td>
<td>-0.123 (\pm) 0.096</td>
</tr>
<tr>
<td>WMAP+BOOMERanG</td>
<td>-</td>
<td>-0.110 (\pm) 0.075</td>
</tr>
</tbody>
</table>

\[\alpha \propto \frac{\xi}{E_p^2} p_{\Omega}^2 \]

At 95% confidence level:

\(-0.260 < \xi < 0.040\)

First limit on \(\xi \) in CMB reference frame
Check on systematic effects

- Misleading detection of rotation can be due to a miscalibration of polarimeters (bad orientation)
 ⇒ check how much a miscalibration could have influenced our result
- we considered a realistic miscalibration of BOOMERANG polarimeters of $(0.9 \pm 0.7)^\circ$
 ⇒ new estimate on α from BOOMERANG:

\[\alpha = (-4.3 \pm 4.1)^\circ \]

⇒ new estimate on ξ (including WMAP)

\[\xi = 0.097 \pm 0.075 \]
Forecasts on future experiments

Future experiments will be able to significantly improve limits on ξ, thanks also to multi-frequency data availability (disentanglement from other effects)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Channel</th>
<th>$\sigma(\alpha)$</th>
<th>$\sigma(\xi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANCK</td>
<td>70</td>
<td>0.64</td>
<td>$6.0 \cdot 10^{-2}$</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.14</td>
<td>$6.5 \cdot 10^{-3}$</td>
</tr>
<tr>
<td></td>
<td>143</td>
<td>0.073</td>
<td>$1.7 \cdot 10^{-3}$</td>
</tr>
<tr>
<td></td>
<td>217</td>
<td>0.10</td>
<td>$1.0 \cdot 10^{-3}$</td>
</tr>
<tr>
<td></td>
<td>100+143+217</td>
<td>-</td>
<td>$8.5 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>Spider</td>
<td>145</td>
<td>0.27</td>
<td>$6.1 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>EPIC</td>
<td>70</td>
<td>$2.1 \cdot 10^{-3}$</td>
<td>$1.9 \cdot 10^{-4}$</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>$1.8 \cdot 10^{-3}$</td>
<td>$7.8 \cdot 10^{-5}$</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>$1.5 \cdot 10^{-3}$</td>
<td>$2.9 \cdot 10^{-5}$</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>$1.2 \cdot 10^{-3}$</td>
<td>$1.1 \cdot 10^{-5}$</td>
</tr>
<tr>
<td></td>
<td>70+100+150+220</td>
<td>-</td>
<td>$1.0 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>CVL</td>
<td>150</td>
<td>$6.1 \cdot 10^{-4}$</td>
<td>$1.3 \cdot 10^{-5}$</td>
</tr>
<tr>
<td></td>
<td>217</td>
<td>$6.1 \cdot 10^{-4}$</td>
<td>$6.1 \cdot 10^{-6}$</td>
</tr>
</tbody>
</table>

Table: Expected 1σ error for PLANCK 70, 100, 143, 217 GHz, Spider 145 GHz, EPIC 70, 100, 150, 220 GHz and two ideal CVL experiment at 150 GHz and 217 GHz on α (in degrees) and ξ.

very strong limits on ξ coming from astrophysical analyses
(GRBs: $|\xi| \lesssim 2 \times 10^{-7}$, Crab Nebula observations: $|\xi| \lesssim 10^{-9}$).
L. Maccione, S. Liberati, A. Celotti, J. G. Kirk, P. Ubertini

but $\xi = n_{0}^{3}$ → related to the time-component of a 4-vector
→ can’t give an absolute limit on the parameter
(one may have $n_{\alpha} \sim (0, 1, 1, 1)$ in one reference frame and
$n_{\alpha} \sim (10^{-3}, 1, 1, 1)$ in another moving with velocity $\beta = 10^{-3}$)

→ need informations on the other components of the vector to compare results

(see GG, G. Genovese, G. Amelino-Camelia, A. Melchiorri [arXiv: :1003.0878])

but $\xi = n_0^3$ → related to the time-component of a 4-vector → can’t give an absolute limit on the parameter (one may have $n_\alpha \sim (0, 1, 1, 1)$ in one reference frame and $n_\alpha \sim (10^{-3}, 1, 1, 1)$ in another moving with velocity $\beta = 10^{-3}$) → need informations on the other components of the vector to compare results

(see GG, G. Genovese, G. Amelino-Camelia, A. Melchiorri [arXiv: :1003.0878])
Conclusions and Outlook

- CMB data do gain sensitivity to Planck scale
- Peculiar energy dependence of Planck-scale birefringence
- CMB covers entire sky \(\rightarrow\) test anisotropic LIV effects
 (work in progress)