Who needs a model? Cosmological tests of model independent modified gravity

Daniel Thomas
with Carlo Contaldi
Imperial College London
Contents

- Motivation
- Parameterisation
- Observables
- Forecasts
Why do we need to go beyond Einstein?

- Quantum Gravity
Why do we need to go beyond Einstein?

- Quantum Gravity
- Dark stuff $T_{\mu\nu} \sim G_{\mu\nu}$
Why do we need to go beyond Einstein?

- Quantum Gravity
- Dark stuff $T_{\mu\nu} \sim G_{\mu\nu}$

- Being a good scientist
Models vs model independent

- Doesn't rely on us having come up with correct model
- No clearly leading alternative; No fundamental theory from complete Quantum Gravity
- No need for model selection criteria
- Answers could lead us to correct theory
What is GR in Cosmology?

- FRW metric: expanding homogeneous and isotropic (flat) spacetime with perturbations
 \[ds^2 = -(1 - 2\Psi)dt^2 + a^2(t)(1 - 2\Phi)\left(dx^2 + dy^2 + dz^2 \right) \]
 \[k^2 \Psi = -4\pi G a^2 \rho \delta(a, k) \quad \text{Fourier space: } \nabla^2 \to -k^2 \]
 \[k^2 (\Phi - \Psi) = -32\pi G a^2 \rho \Pi \]
Parameterisation

- \(\mu: k^2 \Psi = -4\pi G a^2 \mu(a, k) \rho \delta(a, k) \)
- \(\eta = \Psi / \Phi \)
- Both have value 1 in GR
- This work: single value \(\neq 1 \), switches on at redshift 30
Power Spectrum of anisotropies of background radiation

Notably ISW effect, generated at late time by evolution of both potentials

Calculated by Boltzmann code MGCAMB1

1Zhao et al 0809.3791
Observables-Weak Lensing

- Correlations in small scale distortions of galaxy images
- Depends on sum of potentials

![Diagram showing Correlations in small scale distortions of galaxy images](image.png)
Large dark matter halos full of hot gas

Number of clusters at different redshifts very sensitive to \(\Psi \) only

Halo Mass functions: prescriptions for calculating number density of objects with mass \(M \) from linear matter power spectrum
Fisher Matrix

- Examine change in observables as parameters vary
- Compare this to noise of experiment
 \[\Rightarrow \text{forecasted } 1\sigma \text{ constraints on the parameters} \]
3-4 years time

Figure: μ vs η from CMB+WL, then CMB+WL+counts
10 years time

Figure: μ vs η from CMB+WL, then CMB+WL+counts
Combining experiments allows us to constrain *model independent* Modified Gravity.

Adding cluster counts into the mix is a good idea...

...but we could do with understanding clusters better.

Next: Time and scale dependent μ and η.