Constraining Dark Matter annihilation cross-sections with the CMB

Silvia Galli

IAP-Paris
Motivations

- **Anomalies**: excess in the positron electron fraction and in the energy spectrum of electrons.
- Several explanations: pulsar emission, dark matter decay, dark matter annihilation etc...

Positron Electron Fraction

Adriani et al. 2009
Ackermann et al. 2011, Gaggero 2011

Electron Spectrum

Adriani et al. 2009
Ackermann et al. 2011, Gaggero 2011

Fermi Lat-collaboration arXiv:1008.3999
Motivations

→ Thermal production of DM:

\[<\sigma v> \sim 3 \times 10^{-26} \text{ cm}^3/\text{s}. \] (WIMP)

→ Annihilation rate:

\[\Gamma \propto n^2 <\sigma v> \]

n from dm simulations, models, observations

Astrophysical or Particle Physics **BOOST** to explain the data.

Profumo, S. 2005, PRD, 72, 103521

Motivations

→ Thermal production of DM:

\[<\sigma v> \sim 10^{-26} \text{ cm}^3/\text{s.} \ (\text{WIMP}) \]

→ Annihilation rate:

\[\Gamma \propto n^2 <\sigma v> \]. \ n \text{ from dm simulations, models, observations} \]

BOOST of the cross section to explain the data, depends on mass of DM and **annihilation channel**.

Dark Matter annihilation should leave a signature in CMB:

→ At (z~1000), when CMB forms, the homogeneous dark matter density is \(n(z=1000) = n_{\text{today}} (1+z)^3 \sim n_{\text{today}} \times 10^9 \)

→ DM mean velocity \(\beta \sim 10^{-8} \). Favours Sommerfeld Enhancement.
DM annihilation in the recombination epoch

\[
\frac{dE}{dt} = \rho c^2 \Omega_{DM}^2 (1+z)^6 f(z) \frac{\langle \sigma v \rangle}{m_X}
\]

- The CMB can only constrain \(p_{\text{ann}} \), which is the combination of \(f(z) \), i.e. the fraction of DM annihilation energy that goes into the plasma, of the cross section and of the mass.

- \(f(z) \) depends on model, mass of dm, annihilation channel, redshift.

\begin{align*}
\text{Primaries} & : W^\pm, b\bar{b}, Z, h, \tau^\pm, e^\pm, ... \\
\text{Final Products} & : p\bar{p}, \nu\bar{\nu}, e^\pm, \gamma
\end{align*}
Free Electron Fraction (constant f)

$\rho_{\text{ann}} = 1 \times 10^{-5}$

$\rho_{\text{ann}} = 5 \times 10^{-6}$

$\rho_{\text{ann}} = 1 \times 10^{-6}$

$\rho_{\text{ann}} = 0$

$p_{\text{ann}} [\text{m}^3/\text{s}/\text{Kg}]$
CMB Angular Power Spectra

Temperature TT

Polarization EE

Cross Temp-Pol TE
Results on DM annihilation with constant f

\[p_{\text{ann}} = \frac{f \langle \sigma v \rangle}{m_\chi} \]

- Wmap5 data already puts stringent constraints on the cross section/mass, i.e. on the properties of dark matter particles.
- WMAP7 improves of a factor 1.4, thanks to better measurements at higher l in TT, TE.
- Dark Matter models favoured by Pamela almost excluded by WMAP.
- Planck will improve results thanks to polarization data.

\[
\begin{align*}
 p_{\text{ann}}[m^3/s/Kg] & \text{ at } 95\% \text{ c.l.} \\
 \text{WMAP5} & < 2.0 \times 10^{-6} \\
 \text{WMAP7} & < 1.4 \times 10^{-6} \\
 \text{WMAP7+ACT} & < 1.2 \times 10^{-6} \\
 \text{Planck} & < 1.7 \times 10^{-7} \\
 \text{CV1} & < 5.9 \times 10^{-8}
\end{align*}
\]
Improving the constraints: $f(z)$

$$\frac{dE}{dt} = \rho_c^2 c^2 \Omega_{dm} (1+z)^6 f(z) \frac{\langle \sigma v \rangle}{m_\chi}$$

$f(z)$ depends on the mass, model and annihilation channel of the DM particle considered.

Slatyer et al. 2009
A second approach: constraints with variable $f(z)$

For each specific $f(z)$ one can set constraints on the cross-section.

Constraints on $\langle \sigma v \rangle$ [cm3/s] using WMAP7+ACT

<table>
<thead>
<tr>
<th>m_χ</th>
<th>channel</th>
<th>Variable $f(z)$</th>
<th>Constant f</th>
<th>$f(z = 600)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 GeV</td>
<td>e^+e^-</td>
<td>$\leq 2.41 \times 10^{-27}$</td>
<td>$\leq 2.41 \times 10^{-27}$</td>
<td>0.87</td>
</tr>
<tr>
<td>100 GeV</td>
<td>e^+e^-</td>
<td>$\leq 3.55 \times 10^{-25}$</td>
<td>$\leq 3.35 \times 10^{-25}$</td>
<td>0.63</td>
</tr>
<tr>
<td>1 TeV</td>
<td>e^+e^-</td>
<td>$\leq 3.80 \times 10^{-24}$</td>
<td>$\leq 3.48 \times 10^{-24}$</td>
<td>0.60</td>
</tr>
</tbody>
</table>

$$\frac{dE}{dt} = \rho_c^2 c^2 \Omega_{dm} (1 + z)^6 f(z) \frac{\langle \sigma v \rangle}{m_\chi}$$

$$\langle \sigma v \rangle = \frac{p_{ann}^\text{const}}{f(z = 600)} m_\chi$$

For WMAP7 and WMAP7+ACT, knowing the overall normalization $f(z=600)$ is sufficient. This might not be the case for Planck!

A general approach to \(f(z) \): Principal Components

1) For each experiment (WMAP, Planck, CVL etc...) find a basis of deposition histories using PCA.
2) Measure the amplitude of the best measurable principal components with the data.
3) Reconstruct back the deposition histories

\[
p_{ann}(z) = f(z) \frac{<\sigma \nu>}{m_\chi} = \sum_{i=1}^{N} \varepsilon_i e_i(z)
\]

\[
= \varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \ldots
\]

Best determined

Worst determined

Detectability of PC's with future experiments

Assuming a dark matter annihilation signal at the 2-sigma current WMAP7 bound, Planck could detect up to 3 PC's. A CVL experiment would detect ~6 PC's.

Conclusions on Dark Matter annihilation

- **CMB** is a very good DM annihilation probe, independent from the knowledge of DM distribution.
- **WMAP** already puts strong constraints, that are already used to rule out DM models that fit Pamela data.
- We provided a general accurate approach to model the problem.
- **Planck** will need this accurate approach. It will improve constraints by one order of magnitude thanks to polarization measurements.