Clustering and redshift-space distortions as probes of dark energy: present and future

Luigi (Gigi) Guzzo
INAF - Osservatorio di Brera, Milano
• The renaissance of redshift-space distortions (in a new context)

• Improving the data: the VIPERS project at ESO

• Improving the modelling: RSD in the precision cosmology era, predictions and systematic errors

• A glimpse of the distant future: Euclid
Redshift-Space Distortions (RSD) and cosmic acceleration: what’s all the fuss about?
Cosmic concordance: a $w=-1$ Universe?

Amanullah et al. 2010 (Union supernovae)
However, lambda (or dark energy) is not the end of the story...

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -\frac{8\pi G}{c^2} T_{\mu\nu} + \Lambda g_{\mu\nu} \]

Modify gravity theory [e.g. $R \rightarrow f(R)$]
Add dark energy

“…the Force be with you”
To distinguish, look at how linear density fluctuations grow in the expanding Universe.

\[\frac{d}{dt} \delta + 2H(t)\delta = 4\pi G \langle \rho \rangle \delta \]

\[\delta^+(x, t) = \hat{\delta}(x) D(t) \]

\[f = \frac{d \ln D}{d \ln a} \]

(Image credit: V. Springel)
• The growth equation (and thus the growth rate) depends not only on the expansion history $H(z)$ (and thus on $w(z)$) but also on the gravitation theory.

• Measuring $f(z)$ we can break the degeneracy between models with same effective $H(z)$, but completely different physics (unless DE clusters, Kunz & Sapone 2007).

For a wide variety of models:

$$f(z) = [\Omega_m(z)]^\gamma$$

e.g.

$\gamma = 0.55$ for standard Λ

$\gamma = 0.68$ for DGP braneworld

How do we measure $f(z)$?

Growth produces motions: galaxy peculiar velocities

Figure by K. Dolag
In galaxy redshift surveys, peculiar velocities manifest themselves as \textit{redshift-space distortions} (Kaiser 1987).
In galaxy redshift surveys peculiar velocities manifest themselves as *redshift-space distortions* (Kaiser 1987)

redshift space
• E.g. 2dFGRS, $z \sim 0.1$, Peacock et al. 2001, Hawkins et al. 2003

$$\beta = 0.49 \pm 0.09$$

• Essentially used to obtain an estimate of Ω_M once the bias is known or derived (e.g. from the bi-spectrum, Verde et al. 2001):

$$\beta \approx \frac{\Omega_M^{0.55}}{b_L}$$

(Definitive 2dFGRS measurement: Hawkins et al. 2003)
A test of the nature of cosmic acceleration using galaxy redshift distortions

L. Guzzo1,2,3,4, M. Pierleoni2, B. Meneux5, E. Branchini6, O. Le Févre7, C. Marinoni8, B. Garilli9, J. Blaizot5, G. De Lucia5, A. Pollo10, H. J. McCracken10,11, D. Bottini5, V. Le Brun5, D. Maccagni7, J. P. Picat12, R. Scaramella13,14, M. Scodeggio5, L. Tresse7, G. Vettolani15, A. Zanichelli15, C. Adami5, S. Arnouts5, S. Bardelli15, M. Bolzonella15, A. Bongiorno16, A. Cappi15, S. Charlot10, P. Ciliegi15, T. CONTINI17, O. Cucciati11,17, S. de la Torre5, K. Dolag5, S. Foucaud18, P. Franzetti8, I. Gavignaud19, O. Ilbert20, A. Iovino5, F. Lamareille15, B. Marano16, A. Mazure5, P. Memeo5, R. Merighi15, L. Moscardini16,21, S. Paltani22,23, R. Pelló12, E. Perez-Montero12, L. Pozzetti15, M. Radovich24, D. Vergani9, G. Zamorani15 & E. Zucca15

$\beta=0.70\pm0.26 \quad (@ \ z=0.77)$

(LG et al. 2008, Nature 451, 541)
VVDS-Wide @ z=0.77:

\[f = b_L \beta = 0.91 \pm 0.36 \]

Where \(b_L = 1.3 \pm 0.1 \) is measured combining VVDS and CMB (e.g. Marinoni et al. 2005)

The signature of linear growth at \(z \sim 1 \)

Guzzo et al. 2008, Nature 451, 541
Baryonic Acoustic Oscillations imprint in the galaxy distribution

$P(k) (h^{-3} Mpc^3)$

$2\pi/k (h^{-1} Mpc)$

ΛCDM ($\Omega_m = 0.35$)

$\Omega_B =
\begin{cases}
0.005 \\
0.02 \\
0.05 \\
0.10
\end{cases}$

D. Eisenstein 2007
Baryonic Acoustic Oscillations: measure $H(z)$ from redshift surveys

Give $D_A(z)$ and $H(z)$: see Percival et al. 2011 for most recent application to SDSS and 2dFGRS
Waiting for Euclid...
Improving the data: the VIPERS survey
Which survey? BAO-oriented surveys (as e.g. Wigglez or BOSS) aim at huge volumes with sparse sampling. However, highly-sampled surveys like 2dFGRS provided us with a much more comprehensive and detailed view of large-scale structure and its relation to galaxies...
VIPERS: exploiting VIMOS Multi-Object Spectroscopy at the VLT (440 hours)

(see http://vipers.inaf.it)
VIPERS Team

- **MILANO OAB (Project Office)**: L. Guzzo, B. Granett, A. Iovino, A. Marchetti, U. Abbas (Turin)
- **MILANO IASF (Data Reduction Centre)**: B. Garilli, M. Scodeggio, D. Bottini, A. Fritz, P. Franzetti, D. Maccagni, L. Paioro, M. Polletta
- **BOLOGNA**: M. Bolzonella, L. Moscardini, A. Cappi, Y. Davidzon, C. Di Porto, F. Marulli, D. Vergani, G. Zamorani, A. Zanichelli, E. Branchini (Rome)
- **EDINBURGH**: J. Peacock, S. de la Torre
- **GARCHING MPE**: S. Phleps, H. Schlegenhaufer, B. Meneux
- **MARSEILLE**: O. Le Fevre, C. Adami, J. Bel, V. Le Brun, L. Guennou, L. Tasca, C. Marinoni
- **PARIS (TERAPIX CFHTLS)**: H. McCracken, Y. Mellier, M. Volk, J. Coupon (Tokyo), J. Blaizot (Lyon)
- **TRIESTE**: G. De Lucia, O. Cucciati
- **PORTSMOUTH**: W. Percival, R. Tojeiro, R. Nichol
- **WARSAW**: A. Pollo, K. Malek, J. Krywult (Kielce)
VIPERS in a nut-shell

- 440.5 VLT hours
- ~ 24 deg2 over W1 and W4 CFHTLS wide fields ($\sim 16 + 8$)
- $I_{AB} < 22.5$, LR Red grism, 45 min exp.
- 288 VIMOS pointings
- $z > 0.5$ color-color pre-selection
- PSF + SED –based star-galaxy separation (AGN color recovery)
- $\sim 100,000$ redshifts, >40% sampling
- Density and volume comparable to 2dFGRS, but at $z \sim 0.8$
Location of VIPERS fields

CFHT Legacy Survey Areas
VIPERS coverage (as of Dec 2011): ~55,000 spectra observed; ~35,000 redshifts reduced and validated (v2.0 internal release)
VIPERS redshift distribution

34,922 redshifts
(40% of total survey)
Early results: The real-space galaxy $P(k)$ at $<z> \sim 0.8$ from the full CFHTLS-Wide data, “sliced” using VIPERS $N(z)$ and color selection

CFHTLS-Wide:
- ~ 140 deg2
- 5-bands (ugriz)
- 2.1 million galaxies

- VIPERS mag/color criteria work very well in selecting $0.5<z<1.2$
- Characterize VIPERS parent sub-catalogue
- Accurate $N(z)$ crucial for de-projection: provided by VIPERS
- Exploits currently largest available volume of CFHTLS-Wide areas
- Recent Cl angular Thomas
Real space $P(k)$ at $z \sim 0.7$ from CFHTLS-Wide + VIPERS $N(z)$

1) C_l spectrum using Tegmark 1997 quadratic estimator

2) Deconvolved following Efstathiou & Moody 2001

Complementary to recent C_l estimate at $z \sim 0.5$ from SDSS LRGs (Thomas, Abdalla & Lahav 2011)

B. Granett & VIPERS Team, arXiv 1112.0008
Early $\xi(r_p, \pi)$ from first $\sim12,000$ high-quality VIPERS redshifts at $0.5<z<1$

Data

Best-fitting model ($\beta=0.62$)

2 parameter fit of the full shape of $\xi(r_p, \pi)$ on $0<r_p<20$ scale (S. de la Torre, & the VIPERS Collaboration)
f(z) from redshift distortions, recent developments

- ~152,000 redshifts (aim at 200,000 gals), over 5000 deg²
- UV-selected emission-line galaxies from GALEX: complex selection function
- Original main goal: BAOs
- Large volume, very low-density sample
- VIPERS will provide comparable precision, but also allow us to select multiple populations
- Reduce errors (McDonald & Seljak, 2009, JCAP) and control systematics
Summary of VIPERS status

- VIPERS finally exploits VIMOS capabilities for LSS study, filling a specific niche $z \sim 1$: volume $6 \times 10^7 \ h^{-3} \ Mpc^3$, sampling $\geq 40\%$

- Study large-scale structure, clustering and growth at $0.5 < z < 1$, to an accuracy comparable to local state-of-the-art surveys

- Efficient survey pipeline: automatic data calibration, redshift measurement and database archiving: $\sim 22,000$ spectra secured in 2009 season, further $\sim 10,000$ from 2010 under reduction

- Pre-refurbishment data required heavy human review of the automatic redshifts: BIG TEAM EFFORT. Situation improved with new VIMOS CCDs (installed/commissioned in June-September 2010), but full potential still to be reached

- With current observing rate, completion expected by end 2013

- More photometry ongoing/planned (GALEX, WIRCAM, VISTA)

- Public survey: raw data public immediately, redshifts released in regular tranches
Improving the tool: RSD in the precision cosmology era
Kaiser/Hamilton linear redshift-distortion model

\[P(k_{||}, k_{\perp}) = P(k) \left(1 + \beta \mu^2 \right)^2 D(k\mu\sigma_p). \]

\[D(k\mu\sigma_p) = \frac{1}{1 + (k\mu\sigma_p)^2 / 2} \]
Based on BASICC simulation halo catalogues (Angulo et al): 3 billion particles in a 1340 h^{-1} Mpc side box

RESULT: ~5-10% systematic underestimate

Hints that larger-mass halos do perform better (e.g. LRGs)

See also Okumura & Jing 2011 using ratios of moments and Kwan et al. 2011

Calls for improved description of RSD

Improving the linear model: role of galaxy bias

De la Torre & LG 2012, arXiv:1202.5559
Predicting statistical errors: can we trust Fisher Matrix predictions?

Predicting statistical errors: a handy and accurate scaling formula describing the behaviour found in the Monte Carlo experiments

\[\frac{\delta(\beta)}{\beta} \approx C b^{0.7} V^{-0.5} \exp \left(\frac{B}{b^2 n} \right) \]

Accounting for the Alcock-Paczyński effect?

A glimpse of the distant future
Growth with Euclid: RSD

- Redshift-space distortions map motions due to structure growth

\[\sigma_z = 0.001(1+z) \]
\[\sigma_z = 0.0 \]

EUCLID lightcone (100deg²)
\[S_{50}<1\times10^{-16}\text{erg/s/cm}^2 \]
(sims from Durham group)
Euclid will image the

- best 1/3 of the sky (15000 deg2)
- similar resolution at HST in optical
- NIR imaging in 3 filters
- Images for 2×10^9 galaxies

and carry out an unprecedented redshift survey with

- NIR spectra for 5×10^7 galaxies
 ($0.7 < z < 2$)

The Euclid “Red Book”

http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=48983#
Summary

- Explaining the origin of cosmic acceleration is plausibly the most compelling problem in cosmology: did Einstein have the last word on gravity?
- A brilliant future for galaxy redshift surveys: measure both \(w(z) \) and \(f(z) \) using BAOs/P(k) and z-distortions (plus clusters...) \(\rightarrow \) test dark energy vs modified gravity
- A renaissance for redshift-space distortions: not considered in this context before 2008, now accepted as standard “dark energy probe” (EUCLID)

1) RSD: Improving the data
- Exciting \(z \)-distortions results from WiggleZ. More expected soon come from BOSS
- VIPERS: a 2dFGRS at \(z \sim 0.8 \), \(\sim 100,000 \) highly-sampled redshifts; early measurement of real-space \(P(k) \) in combination with CFHTLS
- EUCLID is approved and plans to couple a massive (slitless) redshift survey with a high-resolution imaging survey, to combine galaxy clustering and weak lensing (launch 2019)

2) RSD: Improving the estimators
- Need to go beyond Kaiser-Hamilton formalism, if we aim at precision cosmology on \(f(z) \)
- A lot of work ongoing in the community, very promising results, exciting times ahead
- DARKLIGHT: an ERC Advanced Grant program to improve estimators and apply to early data: look for jobs in this area
"ILLUMINATING DARK ENERGY WITH THE NEXT GENERATION OF COSMOLOGICAL REDSHIFT SURVEYS"

ERC Advanced Research grant 5 years, 1.7 Meuro

5 postdoc positions + 3 PhD positions

Starting summer 2012

- Improve modelling and estimators of clustering and redshift distortions, preparing for precision cosmology
- Apply them to ongoing new surveys (e.g. VIPERS)
- Combine with other probes of LSS (clusters of galaxies) and CMB measurements (Planck)