Parity in the CMB: Space Oddity

Assaf Ben-David
Tel-Aviv University

Recontres de Moriond
March 2012

Based on work with E. D. Kovetz and N. Itzhaki
Outline

- Motivation
- Searching for parity in the CMB
 - in pixel space
 - in harmonic space
- Masking the galactic plane
- Results
Motivation
Motivation

Assumption:

On large enough scales the universe is homogeneous and isotropic.
Motivation

Assumption:

On large enough scales the universe is homogeneous and isotropic.
Motivation

Assumption:
On large enough scales the universe is homogeneous and isotropic.

Inflation:

$V(\phi)$

- Pre-inflationary physics
- Slow roll region
- Larger scales exit the horizon
- Smaller scales exit the horizon

ΛCDM
Motivation

Assumption:
On large enough scales the universe is homogeneous and isotropic.

- In small field models, inflation is short.
- Pre-inflationary physics affect largest scales.
- Test the assumption of isotropy on largest scales.
- Indeed, there are several large scale anomalies ($\sim 3\sigma$).
Anomalous Parity in the CMB?
Anomalous Parity in the CMB?

• Parity with respect to reflections through a plane:

\[\mathcal{P}_\hat{n} : \hat{r} \rightarrow \hat{r} - 2(\hat{r} \cdot \hat{n})\hat{n} \]
Anomalous Parity in the CMB?

• Parity with respect to reflections through a plane:

\[\mathcal{P}_\hat{n} : \hat{r} \rightarrow \hat{r} - 2(\hat{r} \cdot \hat{n})\hat{n} \]

• “S” statistic:

\[S(\hat{n}) = \int d^2\hat{n}' [T(\hat{n}') - T(\mathcal{P}_\hat{n}(\hat{n}'))]^2 \]

de Oliveira-Costa, Tegmark, Zaldarriaga, Hamilton (PRD, 2004)]
Anomalous Parity in the CMB?

• Parity with respect to reflections through a plane:

\[\mathcal{P}_\mathbf{n} : \mathbf{r} \rightarrow \mathbf{r} - 2(\mathbf{r} \cdot \mathbf{n})\mathbf{n} \]

• "S" statistic:

\[S(\mathbf{n}) = \int d^2\mathbf{n}' \left[T(\mathbf{n}') - T(\mathcal{P}_\mathbf{n}(\mathbf{n}')) \right]^2 \]

\[S(\mathbf{n}) = \int d^2\mathbf{n}' T(\mathbf{n}') T(\mathcal{P}_\mathbf{n}(\mathbf{n}')) \]

Anomalous Parity in the CMB?

- Parity with respect to reflections through a plane:
 \[P_\hat{n} : \hat{r} \rightarrow \hat{r} - 2(\hat{r} \cdot \hat{n})\hat{n} \]

- “S” statistic:
 \[S(\hat{n}) = \int d^2\hat{n}' \left[T(\hat{n}') - T(P_\hat{n}(\hat{n}')) \right]^2 \]
 \[S(\hat{n}) = \int d^2\hat{n}' T(\hat{n}')T(P_\hat{n}(\hat{n}')) \]

- “S” Map

The Problems with Pixel-Space
The Problems with Pixel-Space

- Cannot study the scale dependence.
The Problems with Pixel-Space

- Cannot study the scale dependence.
- There are 2-point correlations $C(\theta) \equiv \langle T(\hat{n})T(\hat{n}') \rangle \bigg|_{\hat{n} \cdot \hat{n}' = \cos \theta}$

Copi et al. (MNRAS 2009)
The Problems with Pixel-Space

- Cannot study the scale dependence.
- There are 2-point correlations
 \[C(\theta) \equiv \langle T(\hat{n})T(\hat{n}')\rangle \bigg|_{\hat{n} \cdot \hat{n}' = \cos \theta} \]

- Masking the galactic plane results in strong bias.

Copi et al. (MNRAS 2009)
Harmonic Space Score

\[T(\hat{n}) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{n}) \]
Harmonic Space Score

\[T(\hat{n}) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{n}) \]

- Harmonic coefficients are uncorrelated:
 \[\langle a_{\ell m}^* a_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell} \]
Harmonic Space Score

\[T(\hat{n}) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{n}) \]

- Harmonic coefficients are uncorrelated:
 \[\langle a_{\ell m}^* a_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_\ell \]
- Under reflection through \(\hat{z} \) axis,
 \[Y_{\ell m}(P_{\hat{z}}(\hat{n})) = (-1)^{\ell + m} Y_{\ell m}(\hat{n}) \]
Harmonic Space Score \[T(\hat{n}) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{n}) \]

- Harmonic coefficients are uncorrelated: \(\langle a^*_{\ell m} a_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{mm'} C_\ell \)

- Under reflection through \(\hat{z} \) axis,
 \[Y_{\ell m}(\mathcal{P}_z(\hat{n})) = (-1)^{\ell+m} Y_{\ell m}(\hat{n}) \]

- For each direction \(\hat{n} \), compare for each \(\ell \) the distribution of power between even and odd \(\ell + m \) multipoles:
Harmonic Space Score

\[T(\hat{n}) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{n}) \]

- Harmonic coefficients are uncorrelated: \(\langle a_{\ell m}^* a_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{mm'} C_\ell \)
- Under reflection through \(\hat{z} \) axis,

\[Y_{\ell m}(\mathcal{P}_z(\hat{n})) = (-1)^{\ell + m} Y_{\ell m}(\hat{n}) \]

- For each direction \(\hat{n} \), compare for each \(\ell \) the distribution of power between even and odd \(\ell + m \) multipoles:

\[S(\hat{n}) = \sum_{\ell=2}^{\ell_{\text{max}}} \left[\sum_{m=-\ell}^{\ell} (-1)^{\ell + m} \frac{|a_{\ell m}(\hat{n})|^2}{\hat{C}_\ell} - 1 \right] \]

\[\hat{C}_\ell = \frac{1}{2\ell + 1} \sum_m |a_{\ell m}|^2 \]
Harmonic Space Score

\[T(\hat{n}) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{n}) \]

- Harmonic coefficients are uncorrelated: \[\langle a_{\ell m}^* a_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{mm'} C_\ell \]

- Under reflection through \(\hat{z} \) axis,

\[Y_{\ell m}(P_{\hat{z}}(\hat{n})) = (-1)^{\ell+m} Y_{\ell m}(\hat{n}) \]

- For each direction \(\hat{n} \), compare for each \(\ell \) the distribution of power between even and odd \(\ell + m \) multipoles:

\[S(\hat{n}) = \sum_{\ell=2}^{\ell_{\max}} \left[\sum_{m=-\ell}^{\ell} (-1)^{\ell+m} \frac{|a_{\ell m}(\hat{n})|^2}{\hat{C}_\ell} - 1 \right] \]

\[\hat{C}_\ell = \frac{1}{2\ell + 1} \sum_m |a_{\ell m}|^2 \]

- Standard \(\Lambda \)CDM signal should give \(\langle S \rangle = 0 \).
Parity Score - Full Sky Results
Parity Score - Full Sky Results

- Results for WMAP 7-year ILC map, taking $\ell_{\text{max}} = 5$:
Parity Score - Full Sky Results

- Results for WMAP 7-year ILC map, taking $\ell_{\text{max}} = 5$: Parity Map
Parity Score - Full Sky Results

- Results for WMAP 7-year ILC map, taking $\ell_{\max} = 5$:
 - Parity Map
 - “S” Map
Parity Score - Full Sky Results

- Results for WMAP 7-year ILC map, taking \(\ell_{\text{max}} = 5 \):
 - Parity Map

- A maximum at \((l, b) \approx (260^\circ, 60^\circ)\), the direction of the “Axis of Evil”.
 (e.g. de Oliveira-Costa et al. arXiv:astro-ph/0307282)
Parity Score - Full Sky Results

- Results for WMAP 7-year ILC map, taking $\ell_{\text{max}} = 5$:
 - Parity Map
 - A maximum at $(l, b) \simeq (260^\circ, 60^\circ)$, the direction of the “Axis of Evil”. (e.g. de Oliveira-Costa et al. arXiv:astro-ph/0307282)

- Planarity \rightarrow high $m = \pm \ell \rightarrow$ even.
Parity Score - Full Sky Results

- Results for WMAP 7-year ILC map, taking $\ell_{\text{max}} = 5$:
 Parity Map

- A maximum at $(l, b) \simeq (260^\circ, 60^\circ)$, the direction of the “Axis of Evil”.
 (e.g. de Oliveira-Costa et al. arXiv:astro-ph/0307282)

- Planarity \rightarrow high $m = \pm \ell \rightarrow$ even.

- A minimum at $(l, b) \simeq (266^\circ, -19^\circ)$.
Masking Galactic Noise
Masking Galactic Noise

KQ75
Masking Galactic Noise

Naively, \(a_{\ell m} = \int_M d^2\hat{n} Y^*_{\ell m}(\hat{n}) T(\hat{n}). \)
Masking Galactic Noise

• Naively, \(a_{\ell m} = \int_{M} d^2 \hat{n} Y_{\ell m}^*(\hat{n}) T(\hat{n}) \).

• Spherical harmonics are not orthogonal on masked sky!

• Introduces correlations between coefficients.
Covariance Inversion Method
Covariance Inversion Method

- Use higher-ℓ correlations to reconstruct data on masked sky.

[Box]
de Oliveira-Costa, Tegmark (PRD, 2006)
Efstathiou, Ma, Hanson (arXiv:0911.5399)
Aurich, Lustig (MNRAS, 2011)
Covariance Inversion Method

• Use higher-ℓ correlations to reconstruct data on masked sky.

• For the discrete CMB data

$$\mathbf{x} = \mathbf{Y} \mathbf{a} + \mathbf{n}$$

de Oliveira-Costa, Tegmark (PRD, 2006)
Efstathiou, Ma, Hanson (arXiv:0911.5399)
Aurich, Lustig (MNRAS, 2011)
Covariance Inversion Method

• Use higher-ℓ correlations to reconstruct data on masked sky.

• For the discrete CMB data

\[\mathbf{x} = \mathbf{Y} \mathbf{a} + \mathbf{n} \]

\[Y_{ij} = Y_{\ell j \mu j}(\hat{r}_i) \]

- de Oliveira-Costa, Tegmark (PRD, 2006)
- Efstathiou, Ma, Hanson (arXiv:0911.5399)
- Aurich, Lustig (MNRAS, 2011)
Covariance Inversion Method

- Use higher-ℓ correlations to reconstruct data on masked sky.

- For the discrete CMB data

\[x = Ya + n \]

\[Y_{ij} = Y_{\ell j} m_j (\hat{r}_i) \]

- An unbiased ($\langle \hat{a} \rangle = a$) estimator

\[\hat{a} = \left(Y^\dagger C^{-1} Y \right)^{-1} Y^\dagger C^{-1} x \]

de Oliveira-Costa, Tegmark (PRD, 2006)
Efstathiou, Ma, Hanson (arXiv:0911.5399)
Aurich, Lustig (MNRAS, 2011)
Covariance Inversion Method

- Use higher-ℓ correlations to reconstruct data on masked sky.

- For the discrete CMB data

 \[\mathbf{x} = \mathbf{Y} \mathbf{a} + \mathbf{n} \]

 \[\mathbf{Y}_{ij} = Y_{\ell j m j} (\hat{r}_i) \]

- An unbiased ($\langle \hat{\mathbf{a}} \rangle = \mathbf{a}$) estimator

 \[\hat{\mathbf{a}} = \left(\mathbf{Y}^\dagger \mathbf{C}^{-1} \mathbf{Y} \right)^{-1} \mathbf{Y}^\dagger \mathbf{C}^{-1} \mathbf{x} \]

- Use power spectrum to construct the covariance matrix

 \[C_{ij} = \sum_{\ell=\ell_{\text{max}}+1}^{L} \frac{2\ell + 1}{4\pi} P_{\ell} (\hat{r}_i \cdot \hat{r}_j) C_{\ell} \]

References:
- de Oliveira-Costa, Tegmark (PRD, 2006)
- Efstathiou, Ma, Hanson (arXiv:0911.5399)
- Aurich, Lustig (MNRAS, 2011)
Masking Scheme
Masking Scheme

- Problem: Galactic masks are too large.
Masking Scheme

• Problem: Galactic masks are too large.

• Compromise: Choose only “worst” pixels:
Masking Scheme

• Problem: Galactic masks are too large.

• Compromise: Choose only “worst” pixels:
 • Smooth and square the ILC map.
Masking Scheme

• Problem: Galactic masks are too large.

• Compromise: Choose only “worst” pixels:
 • Smooth and square the ILC map.
Masking Scheme

- Problem: Galactic masks are too large.

- Compromise: Choose only “worst” pixels:
 - Smooth and square the ILC map.
 - Most intensive areas tend to be in the galactic plane.
Masking Scheme

• Problem: Galactic masks are too large.

• Compromise: Choose only “worst” pixels:
 • Smooth and square the ILC map.
 • Most intensive areas tend to be in the galactic plane.
 • Mask out a fixed total area A of most intensive pixels.
Masking Scheme

• Problem: Galactic masks are too large.

• Compromise: Choose only “worst” pixels:
 • Smooth and square the ILC map.
 • Most intensive areas tend to be in the galactic plane.
 • Mask out a fixed total area A of most intensive pixels.
Parity Score - Masked Sky Results
Parity Score - Masked Sky Results

12%
• At $A \sim 7\%$ jumps by almost 40°.

Parity Score - Masked Sky Results

12%
Parity Score - Masked Sky Results

- At $A \sim 7\%$ jumps by almost 40°.
- Does not appear significant.
Parity Score - Masked Sky Results

- At $A \sim 7\%$ jumps by almost 40°.
- Does not appear significant.
- Does not move, for all masks.
Parity Score - Masked Sky Results

- At $A \sim 7\%$ jumps by almost 40°.
- Does not appear significant.
- Does not move, for all masks.
- Appears much more significant.
Parity Score - Masked Sky Results

- At $A \sim 7\%$ jumps by almost 40°.
- Does not appear significant.
- Peaks are $90^\circ \pm 1^\circ$ apart.
- Does not move, for all masks.
- Appears much more significant.
Significance of the Results
Significance of the Results

• Normalize score:

\[S_+(A) = \max_{\hat{n}} S(\hat{n}, A) \]

\[S_-(A) = \min_{\hat{n}} S(\hat{n}, A) \]

\[\bar{S}_\pm(A) = \left| \frac{S_\pm(A) - \mu(A)}{\sigma(A)} \right| \]
Significance of the Results

- Normalize score:

\[S_+(A) = \max_{\hat{n}} S(\hat{n}, A) \]

\[S_-(A) = \min_{\hat{n}} S(\hat{n}, A) \]

\[\bar{S}_\pm(A) = \left| \frac{S_\pm(A) - \mu(A)}{\sigma(A)} \right| \]
Significance of the Results

• Normalize score:

\[
S_+(A) = \max_{\hat{n}} S(\hat{n}, A)
\]

\[
S_-(A) = \min_{\hat{n}} S(\hat{n}, A)
\]

\[
\bar{S}_\pm(A) = \left| \frac{S_\pm(A) - \mu(A)}{\sigma(A)} \right|
\]

• Compare with random ΛCDM simulations.
Significance of the Results

- Normalize score:

\[S_+(A) = \max_{\hat{n}} S(\hat{n}, A) \]

\[S_-(A) = \min_{\hat{n}} S(\hat{n}, A) \]

\[\bar{S}_\pm(A) = \left| \frac{S_\pm(A) - \mu(A)}{\sigma(A)} \right| \]

- Compare with random ΛCDM simulations.
Significance of the Results

• Normalize score:

\[S_+(A) = \max_{\hat{n}} S (\hat{n}, A) \]
\[S_-(A) = \min_{\hat{n}} S (\hat{n}, A) \]
\[\bar{S}_\pm(A) = \left| \frac{S_\pm(A) - \mu(A)}{\sigma(A)} \right| \]

• Compare with random \(\Lambda CDM \) simulations.
Significance of the Results

• Normalize score:

\[
S_+(A) = \max_{\hat{n}} S(\hat{n}, A)
\]

\[
S_-(A) = \min_{\hat{n}} S(\hat{n}, A)
\]

\[
\bar{S}_\pm(A) = \left| \frac{S_\pm(A) - \mu(A)}{\sigma(A)} \right|
\]

• Compare with random \(\Lambda CDM\) simulations.

12%
Significance of the Results

- Normalize score:

\[S_+(A) = \max_{\hat{n}} S(\hat{n}, A) \]
\[S_-(A) = \min_{\hat{n}} S(\hat{n}, A) \]
\[\bar{S}_\pm(A) = \left| \frac{S_\pm(A) - \mu(A)}{\sigma(A)} \right| \]

- Compare with random ΛCDM simulations.
Significance of the Results

- Normalize score:
 \[S_+(A) = \max_{\hat{n}} S(\hat{n}, A) \]
 \[S_-(A) = \min_{\hat{n}} S(\hat{n}, A) \]
 \[\bar{S}_\pm(A) = \left| \frac{S_\pm(A) - \mu(A)}{\sigma(A)} \right| \]

- Compare with random ΛCDM simulations.
Significance of the Results

- Normalize score:

\[S_+(A) = \max_{\hat{n}} S(\hat{n}, A) \]

\[S_-(A) = \min_{\hat{n}} S(\hat{n}, A) \]

\[\bar{S}_\pm(A) = \left| \frac{S_\pm(A) - \mu(A)}{\sigma(A)} \right| \]

- Compare with random ΛCDM simulations.

\[\ell_{\text{max}} = 6 \]

\[4.3\sigma \]
Future
Future

- Data from Planck.
Future

- Data from Planck.
- A model for a pre-inflationary effect which is parity odd?
Thank You!
Separate Frequency Bands

Masked with KQ85
Testing for Bias

- Bias due to masking?
- Bias due to degradation?
Motivation for Masking Scheme

Bennett et al. (ApJS 2011)