Modified gravity: a theorist’s perspective

Enrico Trincherini
Scuola Normale Superiore
General Relativity is ________ theory

Is there any strong motivation to try to modify GR at large distances?
General Relativity is _________ theory

Is there any strong motivation to try to modify GR at large distances?

Dark matter

Present accelerated expansion
What is GR?

It is the only consistent Lorentz invariant theory of a massless spin 2 field at low energies

Weinberg '65
What is GR?

It is the only consistent Lorentz invariant theory of a massless spin 2 field at low energies

Modify GR in the infrared

There must be extra light degrees of freedom (Brans-Dicke, f(R), Pauli-Fierz massive gravity, DGP, ...)

Weinberg ’65
What is GR?

It is the only consistent Lorentz invariant theory of a massless spin 2 field at low energies

Modify GR in the infrared

There must be extra light degrees of freedom

one extra scalar ϕ

Effect comes from the coupling of ϕ to $T_{\mu\nu}$

scalar contribution to the stress energy tensor small

self-acceleration vs acceleration by dark energy

Weinberg ’65
\[M_{\text{Pl}}^2 R - (\partial \varphi)^2 + \frac{1}{M_{\text{Pl}}} h_{\mu\nu} T^{\mu\nu} + \frac{1}{M_{\text{Pl}}} \varphi T \]

No microscopic violation of EP
\[M_{\text{Pl}}^2 R - (\partial \varphi)^2 + \frac{1}{M_{\text{Pl}}} h_{\mu \nu} T^{\mu \nu} + \frac{1}{M_{\text{Pl}}} \varphi T \]
Almost GR: \(\leq O(10^{-3}) \)

Scalar-tensor: \(O(1) \)

- \(r_{\text{pluto}} \): 10^{14} \text{ cm}
- \(r_{\text{IR}} \): \(\sim H_0^{-1} \), 10^{28} \text{ cm}
almost GR \[\leq O(10^{-3}) \]

scalar-tensor \[O(1) \]

screening mechanism

\[r_{\text{pluto}} \sim 10^{14} \text{ cm} \]

\[r_{\text{IR}} \sim H_0^{-1} \sim 10^{28} \text{ cm} \]
$\lesssim O(10^{-3})$
Chameleon mechanism
Khoury, Weltman ‘03

the mass of the scalar depends on the local matter density

\[M_{\text{Pl}}^2 R - (\partial \varphi)^2 + V(\varphi) + \frac{1}{M_{\text{Pl}}} h_{\mu\nu} T^{\mu\nu} + \frac{1}{M_{\text{Pl}}} \varphi T \]
Chameleion mechanism

\[M_{P_1}^2 R - (\partial \varphi)^2 + V(\varphi) + \frac{1}{M_{P_1}} h_{\mu\nu} T^{\mu\nu} + \frac{\beta}{M_{P_1}} \varphi T \]
Chameleion mechanism

\[M_{Pl}^2 R - (\partial \varphi)^2 + V(\varphi) + \frac{1}{M_{Pl}} h_{\mu\nu} T^{\mu\nu} + \frac{\beta}{M_{Pl}} \varphi T \]

\(f(R) \) is just a specific subgroup of this class

\[M_{Pl}^2 f(\tilde{R}) + S_{\text{matter}}[\tilde{g}_{\mu\nu}, \Psi_i] \]

when rewritten in terms of \(\varphi, g_{\mu\nu} \)

\[f'(\tilde{R}) = \exp \left(-\frac{2\beta \varphi}{M_{Pl}} \right) \]

\[g_{\mu\nu} = e^{-\frac{2\beta \varphi}{M_{Pl}}} \tilde{g}_{\mu\nu} \]

\[V(\varphi) = \frac{M_{Pl}^2 (\tilde{R} f'(\tilde{R}) - f(\tilde{R}))}{2 f'(\tilde{R})^2} \]

\(\beta = \sqrt{1/6} \)
Chameleon mechanism

\[M_{\text{Pl}}^2 R - (\partial \varphi)^2 + V(\varphi) + \frac{1}{M_{\text{Pl}}} h_{\mu\nu} T^{\mu\nu} + \frac{\beta}{M_{\text{Pl}}} \varphi T \]

\[\Box \varphi = V'(\varphi) - \frac{\beta}{M_{\text{Pl}}} \rho \]

Scalar has a large mass inside the object the exterior scalar profile sourced only by a thin shell of mass at the boundary.
Chameleon mechanism

\[M_{Pl}^2 R - (\partial \varphi)^2 + V(\varphi) + \frac{1}{M_{Pl}} h_{\mu\nu} T^{\mu\nu} + \frac{\beta}{M_{Pl}} \varphi T \]

\[\Box \varphi = V'(\varphi) - \frac{\beta}{M_{Pl}} \rho \]

Scalar has a large mass inside the object the exterior scalar profile sourced only by a thin shell of mass at the boundary

Constraint on cosmological value of \(\varphi \)

\[\frac{\beta \varphi}{M_{Pl}} < 10^{-5} \]

Brax, van de Bruck, Davies, Shaw ’08
Chameleon mechanism

\[M_{\text{Pl}}^2 R - (\partial \varphi)^2 + V(\varphi) + \frac{1}{M_{\text{Pl}}} h_{\mu\nu} T^{\mu\nu} + \frac{\beta}{M_{\text{Pl}}} \varphi T \]

\[\frac{\beta \varphi}{M_{\text{Pl}}} < 10^{-5} \quad \text{Origin of acceleration} \]

Jordan frame ("physical") metric

\[\tilde{g}_{\mu\nu} = e^{\frac{2\beta \varphi}{M_{\text{Pl}}}} g_{\mu\nu} \]

Einstein metric flat, not dark energy effect
Caused by the non-minimal scalar coupling instead

Chameleon theories cannot support genuine self-acceleration
Vainshtein screening

higher derivative self-interactions suppress the scalar at short scales

\[M_{P1}^2 R - (\partial \pi)^2 + \mathcal{L}(\partial \pi, \partial^2 \pi, \ldots) + \frac{1}{M_{P1}} h_{\mu \nu} T^{\mu \nu} + \frac{1}{M_{P1}} \pi T \]
Vainshtein screening

Robustly implemented in an Effective Field Theory

\[-(\partial \pi)^2 + \mathcal{L}_\pi + \frac{1}{M_{Pl}} \pi T\]

The Galileon \[\pi(x) \rightarrow \pi(x) + c + b_\mu x^\mu\]

\[\mathcal{L}^{(2)} = (\partial \pi)^2\]
\[\mathcal{L}^{(3)} = (\partial \pi)^2 \Box \pi\]
\[\mathcal{L}^{(4)} = (\partial \pi)^2 [(\Box \pi)^2 - \partial_\mu \partial_\nu \partial^\mu \partial^\nu \pi]\]
\[\mathcal{L}^{(5)} = (\partial \pi)^2 [(\Box \pi)^3 - 3 \Box \partial_\mu \partial_\nu \pi \partial^\mu \partial^\nu \pi + 2 \partial_\mu \partial_\nu \pi \partial^\nu \partial^\alpha \pi \partial^\mu \partial^\alpha \pi]\]

2 derivatives EOM \[\rightarrow\] No extra ghost-like dof

Nicolis, Rattazzi, ET ’08
$M_{Pl}^2 \mathcal{R}$

$\left(\partial h_c\right)^2 + \frac{h_c}{M_{Pl}} \left(\partial h_c\right)^2 + \frac{h_c^2}{M_{Pl}^2} \left(\partial h_c\right)^2 + \ldots + \frac{1}{M_{Pl}^2} \left(\partial^2 h_c\right)^2 + \frac{h_c}{M_{Pl}^3} \left(\partial^2 h_c\right)^2 + \ldots + \frac{1}{M_{Pl}^4} h_c T$

$g_{\mu\nu} = \eta_{\mu\nu} + \frac{h_{\mu\nu}^c}{M_{Pl}}$
General Relativity

$M_{Pl}^2 \mathcal{R}$

$\ell = M^3 / (r h c) \ll M_{Pl}^2 r$

$\rho = M \delta^3(r)$

$h_c \sim \frac{M}{r M_{Pl}}$

Non-linearities become important at a scale r_s where

$\frac{h_c}{M_{Pl}} \sim 1 \Rightarrow r_s \sim \frac{M}{M_{Pl}^2}$
Non-linearities become important at a scale r_s where

$$\frac{h_c}{M_{\text{Pl}}} \sim 1 \Rightarrow r_s \sim \frac{M}{M_{\text{Pl}}^2}$$

All the other terms are suppressed by extra-powers of

$$\frac{\partial}{\Lambda} \sim \frac{1}{r M_{\text{Pl}}} \ll 1$$

We can compute classical non-linearities without knowing the UV compl
The Galileon

Non renormalization theorem

Loops of quantum fields with interactions $\mathcal{L}^{(3)}, \mathcal{L}^{(4)}, \mathcal{L}^{(5)}$ generate terms involving at least 2 derivatives on the external legs. In particular galilean terms are not renormalized.

\begin{align*}
(\partial \pi)^2 &+ \frac{c_3}{\Lambda^3} (\partial \pi)^2 \Box \pi + \frac{c_4}{\Lambda^6} (\partial \pi)^2 (\partial^2 \pi)^2 + \frac{c_5}{\Lambda^9} (\partial \pi)^2 (\partial^2 \pi)^3 \\
+ \frac{d_2}{\Lambda^2} (\partial^2 \pi)^2 &+ \frac{d_3}{\Lambda^5} (\partial^2 \pi)^3 + \ldots + \frac{1}{M_{Pl}} \pi T
\end{align*}

Luty, Porrati, Rattazzi '03
The Galileon

Non renormalization theorem

Loops of quantum fields with interactions $\mathcal{L}^{(3)}$, $\mathcal{L}^{(4)}$, $\mathcal{L}^{(5)}$ generate terms involving at least 2 derivatives on the external legs. In particular galilean terms are not renormalized

$$\Box \pi + \frac{c_3}{\Lambda^3} (\partial \pi)^2 \Box \pi + \frac{c_4}{\Lambda^6} (\partial \pi)^2 (\partial^2 \pi)^2 + \frac{c_5}{\Lambda^9} (\partial \pi)^2 (\partial^2 \pi)^3$$

$$+ \frac{d_2}{\Lambda^2} (\partial^2 \pi)^2 + \frac{d_3}{\Lambda^5} (\partial^2 \pi)^3 + \ldots + \frac{1}{M_{Pl}} \pi T$$

$$\pi \sim \frac{M}{M_{Pl}} \frac{1}{r}$$

Classical non-linearities important

$$\frac{\partial^2 \pi}{\Lambda^3} \sim 1 \Rightarrow r_V \sim \left(\frac{M}{M_{Pl} \Lambda^3} \right)^{\frac{1}{3}}$$

Luty, Porrati, Rattazzi '03
The Galileon

Non renormalization theorem Luty, Porrati, Rattazzi ’03
Loops of quantum fields with interactions $\mathcal{L}^{(3)}, \mathcal{L}^{(4)}, \mathcal{L}^{(5)}$ generate terms involving at least 2 derivatives on the external legs. In particular galilean terms are not renormalized

\[
\begin{align*}
(\partial \pi)^2 + \frac{c_3}{\Lambda^3} (\partial \pi)^2 \Box \pi + \frac{c_4}{\Lambda^6} (\partial \pi)^2 (\partial^2 \pi)^2 + \frac{c_5}{\Lambda^9} (\partial \pi)^2 (\partial^2 \pi)^3 \\
+ \frac{d_2}{\Lambda^2} (\partial^2 \pi)^2 + \frac{d_3}{\Lambda^5} (\partial^2 \pi)^3 + \ldots + \frac{1}{M_{\text{Pl}}} \pi T
\end{align*}
\]

\[
\pi \sim \frac{M}{M_{\text{Pl}}} \frac{1}{r}
\]

Classical non-linearities important

\[
\frac{\partial^2 \pi}{\Lambda^3} \sim 1 \Rightarrow r_V \sim \left(\frac{M}{M_{\text{Pl}} \Lambda^3}\right)^{\frac{1}{3}}
\]

All the other operators are suppressed by extra powers of $\frac{\partial}{\Lambda}$.
Results

Stable self-accelerating dS solutions

Stable spherically symmetric Vainshtein-like solutions around compact objects

\[\Lambda = \left(H_0^2 M_{\text{Pl}} \right)^{1/3} \]

Nicolis, Rattazzi, ET ’08
Results

Stable self-accelerating dS solutions

\[\Lambda = (H_0^2 M_{Pl})^{1/3} \]

Stable spherically symmetric Vainshtein-like solutions around compact objects

Nicolis, Rattazzi, ET ‘08

Superluminal propagation around non trivial background

Nicolis, Rattazzi, ET ‘09

The UV completion **cannot** be a Lorentz-invariant local QFT

Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi ‘06
Conclusions

When one comes up with a model that tries to explain the accelerated expansion by a modification of gravity

Order zero questions:
Conclusions

When one comes up with a model that tries to explain the accelerated expansion by a modification of gravity

Order zero questions:

i) Is it a modification of gravity in the IR?

Self-acceleration vs dark energy
Conclusions

When one comes up with a model that tries to explain the accelerated expansion by a modification of gravity

Order zero questions:

i) Is it a modification of gravity in the IR? vs dark energy

ii) Is the self-accelerating solution stable?
Conclusions

When one comes up with a model that tries to explain the accelerated expansion by a modification of gravity

Order zero questions:

i) Is it a modification of gravity in the IR? Self-acceleration vs dark energy

ii) Is the self-accelerating solution stable?

iii) How are the extra DOFs screened at shorter scales?
Conclusions

When one comes up with a model that tries to explain the accelerated expansion by a modification of gravity

Order zero questions:

i) Is it a modification of gravity in the IR?

ii) Is the self-accelerating solution stable?

iii) How are the extra DOFs screened at shorter scales?

iv) Is the lagrangian of the extra DOFs robust (stable under quantum corrections)?
Conclusions

When one comes up with a model that tries to explain the accelerated expansion by a modification of gravity

Order zero questions:

i) Is it a modification of gravity in the IR?

ii) Is the self-accelerating solution stable?

iii) How are the extra DOFs screened out at shorter scales?

iv) Is the lagrangian of the extra DOFs robust (stable under quantum corrections)?

Self-acceleration vs dark energy