On the physical origin of the dark energy component: a revival of the vacuum contribution.

Alain Blanchard
Arnaud Dupays (LCAR), Brahim Lamine (LKB)

La Thuile “Cosmology”, March 16, 2012
Historical aspects

Λ was introduced by Einstein
Historical aspects

Λ was introduced by Einstein

Nerst (1916) and Pauli discussed the possible contribution of zero-point energy to the density of the Universe (→ Kragh arXiv:1111.4623)
Historical aspects

Λ was introduced by Einstein

Nerst (1916) and Pauli discussed the possible contribution of zero-point energy to the density of the Universe (→ Kragh arXiv:1111.4623)

Lemaître (1934) made the comment that Λ is equivalent to a Lorentz invariant non-zero vacuum, i.e.

\[p = -\rho \] (1)
Historical aspects

Λ was introduced by Einstein

Nerst (1916) and Pauli discussed the possible contribution of zero-point energy to the density of the Universe (→ Kragh arXiv:1111.4623)

Lemaître (1934) made the comment that Λ is equivalent to a Lorentz invariant non-zero vacuum, i.e.

\[p = -\rho \] \hspace{1cm} (1)

So is this the origin of the acceleration?
Historical aspects

No!
The Vacuum catastroph (Weinberg, 1989):

\[\rho_v = \langle 0 | T^{00} | 0 \rangle = \frac{1}{2(2\pi)^3} \int_{0}^{+\infty} k \, d^3k \]

highly divergent.
Historical aspects

No!

The Vacuum catastroph (Weinberg, 1989):

\[
\rho_v = \langle 0 | T^{00} | 0 \rangle = \frac{1}{2(2\pi)^3} \int_0^{+\infty} k \, d^3k
\]

highly divergent:

\[
\rho_v(k_c) \propto \frac{k_c^4}{16\pi^2}
\]
Equation of state

The pressure:

$$p_v = \frac{1}{3} \sum_i \langle 0 | T^{ii} | 0 \rangle = \frac{1}{3} \frac{1}{2(2\pi)^3} \int_0^{+\infty} k \, d^3k$$
Equation of state

The pressure:

\[p_v = \frac{1}{3} \sum_i \langle 0 | T^{ii} | 0 \rangle = \frac{1}{3} \frac{1}{2(2\pi)^3} \int_0^{+\infty} k \, d^3k \]

So that any regularization that is applied to both quantities leads to the e.o.s.:
Equation of state

The pressure:

\[p_V = \left(\frac{1}{3} \right) \sum_i \langle 0 | T^{ii} | 0 \rangle = \frac{1}{3} \frac{1}{2(2\pi)^3} \int_0^{+\infty} k \, d^3k \]

So that any regularization that is applied to both quantities leads to the e.o.s.:

\[p = \frac{1}{3} \rho \]

(2)
Equation of state

The pressure:

\[p_v = \frac{1}{3} \sum_i \langle 0 | T^{ii} | 0 \rangle = \frac{1}{3} \frac{1}{2(2\pi)^3} \int_{0}^{+\infty} k \, d^3k \]

So that any regularization that is applied to both quantities leads to the e.o.s.:

\[p = \frac{1}{3} \rho \quad (2) \]

i.e. eq. (1) + eq. (2) leads to:

\[p_v = \rho_v = 0 \]
Equation of state

The pressure:

\[p_v = \left(\frac{1}{3} \right) \sum_i \langle 0 | T^{ii} | 0 \rangle = \frac{1}{3} \frac{1}{2(2\pi)^3} \int_0^{+\infty} k \, d^3k \]

So that any regularization that is applied to both quantities leads to the e.o.s.:

\[p = \frac{1}{3} \rho \tag{2} \]

i.e. eq. (1) + eq. (2) leads to:

\[p_v = \rho_v = 0 \]

→ usual conclusion on zero-point energy contribution.
Casimir effect

Where is there vacuum contribution in laboratory physics?
Casimir effect

Where is there vacuum contribution in laboratory physics?

Casimir effect
Casimir effect

Where is there vacuum contribution in laboratory physics?

with:

\[p_x = 3\rho \]
Casimir effect

Where is there vacuum contribution in laboratory physics?

with:

\[p_x = 3\rho < 0 \]
Casimir effect

Where is there vacuum contribution in laboratory physics?

Casimir effect

with:

\[p_x = 3\rho < 0 \]

and ...
Casimir effect

Where is there vacuum contribution in laboratory physics?

with:

\[p_x = 3\rho < 0 \]

and ...

\[p_{//} = -\rho \]

Brown & Maclay (1968)
Casimir effect from from higher dimension

Assume there is an additional compact dimension.
Casimir effect from from higher dimension

Assume there is an additional compact dimension.

The quantification of gravitational field modes in the bulk leads to a Casimir energy ...
Casimir effect from from higher dimension

Assume there is an additional compact dimension.

The quantification of gravitational field modes in the bulk leads to a Casimir energy (Appelquist & Chodos, 1983):

\[\rho_{5D}^v = \frac{15hc}{2\pi^2\alpha^5} - \frac{15hc\zeta(5)}{128\pi^7 R^5} \]
Casimir effect from from higher dimension

Assume there is an additional compact dimension.

The quantification of gravitational field modes in the bulk leads to a Casimir energy (Appelquist & Chodos, 1983):

$$\rho^{5D}_v = \frac{15\hbar c}{2\pi^2 \alpha^5} - \frac{15\hbar c \zeta(5)}{128\pi^7 R^5}$$

Now let’s assume that physics of cancellation of the vacuum contribution occured at high energy when the radius $R = R_i$ then (after integration over 5th dim):
Casimir effect from from higher dimension

Assume there is an additional compact dimension.

The quantification of gravitational field modes in the bulk leads to a Casimir energy (Appelquist & Chodos, 1983):

$$\rho_v^{5D} = \frac{15\hbar c}{2\pi^2\alpha^5} - \frac{15\hbar c\zeta(5)}{128\pi^7 R^5}$$

Now let's assume that physics of cancellation of the vacuum contribution occurred at high energy when the radius $R = R_i$ then (after integration over 5th dim):

$$\rho_v = \int_0^{2\pi R} \rho_v^{5D} \, dx^5 = \frac{15\hbar c\zeta(5)}{64\pi^6 R^4} \left[\left(\frac{R}{R_i} \right)^5 - 1 \right]$$
That’s it!

Choose R_i and $R(< 50\mu m)$ to match Ω_Λ.
That’s it!

Choose R_i and $R(< 50\mu m)$ to match Ω_Λ

if $R_i \sim R$ than $R \sim 10\mu m$
That’s it!

Choose R_i and $R(< 50\mu m)$ to match Ω_{Λ}

if $R_i \sim R$ than $R \sim 10\mu m$

corresponding to energy of ~ 1 TeV
Casimir effect from additional dimension can produce a non-zero vacuum contribution to the density of the universe with the correct equation of state.
Conclusion

Casimir effect from additional dimension can produce a non-zero vacuum contribution to the density of the universe with the correct equation of state.

With a little more trick it produces a cosmological constant as observed.
Casimir effect from additional dimension can produce a non-zero vacuum contribution to the density of the universe with the correct equation of state.

With a little more trick it produces a cosmological constant as observed.

Acceleration could be the direct manifestation of the quantum gravitational vacuum.