Dark Matter Directional Detection

Daniel Santos
Laboratoire de Physique Subatomique et de Cosmologie
(UJF Grenoble 1 -CNRS/IN2P3-INPG)

With contributions from Dan Snowden-Ift and James Battat slides
At the galaxy cluster scale...

(1E0657-558) \[Z = 0.296 \]

Collision de l’amas du Boulet
(D. Clowe et al. 2006)

Total mass profiles Baryonic Matter

Non-baryonic matter is 6 times more important than baryonic one...
Directional detection: principle

\[<V_{\text{rot}} > \sim 220 \text{ km/s} \]

« A wind of WIMPS coming from the Cygnus constellation »

The signature able to correlate the events found to the galactic halo!
Solar System's orbit

Galactic coordinates

V_WIMP

Z_G

X_G

b

Y_G

V_{SS}

Solar System

WIMP signal

Cygnus Constellation (l = 90°, b = 0°)

After collision

WIMP signal expected

D. Santos (LPSC-Grenoble)

Moriond-VHEPU, March 14th 2013
Map of recoils in galactic coordinates (HealPix)

10^8 Events with $E_R = [5,50]$ keV
Angular modulation of WIMP flux

Modulation is sidereal (tied to stars) not diurnal (tied to Sun)
100 WIMP evts + 100 Background evts
Phenomenology: **Discovery**

Proof of discovery: **Signal pointing toward the Cygnus constellation**

Blind likelihood analysis in order to establish the galactic origin of the signal

Strong correlation with the direction of the Constellation Cygnus even with a large background contamination
Directional experiments around the world

- DRIFT (Boulby)
- Emulsions (Gran Sasso)
- NEWAGE (Kamioka)
- DMTPC (WIPP)
- MIMAC (Modane)

Running in an Underground Laboratory
“The case for a directional dark matter detector and the status of current experiments”

International Journal of Modern Physics A

112 authors from both theory and experiment
DRIFT – Directional Recoil Identification From Tracks

Started = 1998, US/UK
Underground in Boulby, England in 2001
Current operating detector = DRIFT-IIId
Technology = Negative ion TPC with
MWPC wire readout

xyz resolution = 2 mm, ~<2mm, 0.2 mm,
no absolute
Target = 30 Torr CS$_2$ + 10 Torr CF$_4$
Fiducial volume = 800 liters
F mass = 33.3 g
Limit setting threshold = 50 keVr
DM-TPC – Dark Matter TPC

Started = 2007, US
Underground in WIPP, USA in 2011
Current operating detector = DMTPC
10 liter
Technology = TPC with micromegas + light and charge readout

xyz resolution = 0.256 mm &
absolute in xy, Δz coming
Target = CF₄ @ 75 Torr
Fiducial volume = 9.18 liters
F mass = 2.85 g
Limit setting threshold = 80 keVr
DMTPC

10L

4Shooter (20L)

DMTPCino (1 m³)

Underground at WIPP

At MIT

Funded by NSF+DoE

James Battat Bryn Mawr College

D. Santos (LPSC-Grenoble)
NEWAGE
Started 2002, Japan
(KOBE university)
(New generation WIMP search with an advanced gaseous tracker experiment)

30 cm x 30 x 31 cm³, 400 μm pitch

30 cm μPIC
(Toshiba)

Moriond-VHEPU, March 14th 2013
D. Santos (LPSC-Grenoble)
Nuclear Emulsion

Started = 2010, Japan
Underground in LNGS, Italy
Current operating detector = Prototype
Technology = Fine grained nuclear emulsion + expansion + microscope readout
Spatial resolution = 100 nm

Target = C(NO), Br, Ag
Thresholds = C - 40 keV, Br - 170 keV, Ag - 200 keV in principle
Interaction = Target is SI, but Br and Ag have spin.
Detector mass of prototype - we will make several g detector
MIMAC
MIcro-tpc MAtrix of Chambers
(started 2005 – France)

Strategy:
- Matrix of micro-TPC
- Directional detection (energy and 3D track)
- Multi-targets (1H, 3He, 19F) ---> $\sigma(A)$
- Axial interaction
- 3He, CH$_4$, C$_4$H$_{10}$, CF$_4$

- TPC low pressure (~50 mbar)
- Pixellized Micromegas (Saclay) coupled to a LPSC fast and self-triggered electronics

Rejection based on:
- Energy and 3D-track : e-/nuclei
- Correlation of μTPCs (neutrons)

Moriond-VHEPU, March 14th 2013
Ionization Quenching Measurements:
5keV 19F Recoil in 60 mbar
40mbar CF$_4$+16.8mbar CHF$_3$+1.2 mbar Isobutane

Recoil: 19F 5 keV
$E_i = 1.19$ keV
$Q=0.238$
Threshold: 400 eV
Recoil of 19F $(E_{\text{ion}} \sim 40 \text{ keV})$ in 50 mbar of CF4 + CHF3 (30%)

Q. Riffard’s talk on MIMAC, tomorrow! for more details
MIMAC (bi-chamber module) at Modane Underground Laboratory (France) since June 22nd 2012

- working at 50 mbar

 \(\text{CF}_4 + 28\% \text{ CHF}_3 + 2\% \text{ C}_4\text{H}_{10} \)

- in a permanent circulating mode
- Remote controlled and commanded
- Calibration control twice per week

Many thanks to LSM staff
An alpha particle crossing the detector
(as an illustration of the MIMAC observables)

D. Santos (LPSC-Grenoble)
« MIMAC – observables »

• Ionization energy (+ quenching factor)
• Track length and 3D track
• NIS (Normalized Integrated Straggling)

 Low energy electron/recoil discrimination for directional Dark Matter detection, J.Billard et al. (JCAP 07(2012) 020

• Delta T= (Flash-ADC time – Time slots) [20ns] = f(drift)
• dE/dx asymmetry as a function of t
• Track topology (number of holes)

Quentin Riffard’s talk tomorrow (March 15th) for more details
Total event rate at Modane in Chamber2 (threshold 1 keVee, at 470V) (no cuts !) (validation of the source of alphas (Rn))

Event rate

Stop of circulation October 3rd 2012
Calibration – Chamber2 (at Modane) fluorescence of Cd-(Cr-Fe)-Cu

Energy (ADC channel)

- 3.2 keV
- 6.4 keV
- 8.1 keV

<table>
<thead>
<tr>
<th>h_Energy_s1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>RMS</td>
</tr>
</tbody>
</table>
(preliminary analysis): A “recoil event” (~ 34 keVee)

D. Santos (LPSC-Grenoble)

Moriond-VHEPU, March 14th 2013
Nuclear Recoils produced by the 222Rn chain decay (without alpha detection)

$E_{\text{kin}}(^{218}\text{Po}) \sim 100$ keV

$E_{\text{ion}} \sim 38$ keV (Q_{ion} from SRIM)

$L_{\text{track}} \sim 700$ um
Spectrum of nuclear recoil tracks detected at Modane (coming from the 222Rn chain decay, surface events) and the alpha particles through the cathode…

Q. Riffard’s talk on MIMAC, tomorrow! For more details
MIMAC – $1m^3 = 50$ bi-chambers ($20\times20\times25\;\text{cm}^3$)

i) New technology anode $20\times20\text{cm}$ or bigger (piggy-back) (already tested in $10\times10\text{cm}$)

ii) New electronic card (1024 channels)

iii) Only two big chambers (25 bi-chambers each in the case of $20\times20\;\text{cm}^2$ anode)

New $20\times20\text{cm}$ pixellized anode
Directional Dark Matter: discovery/exclusion

- **discovery (5σ)**
 - Up to 10^{-4} pb

- **exclusion**
 - Up to 10^{-6} pb

J. Billard *et al.*, PLB 2010
J. Billard *et al.*, PRD 2010

- Simulated data
 - 30 kg/year CF$_4$
 - Recoil energy [5, 50] keV
 - Angular resolution: 15°
MIMAC Phenomenology: Discovery

Estimation of the discovery potential

MIMAC characteristics
- 10 kg CF₄
- DAQ: 3 years
- Recoil energy range [5, 50] keV

Discovery at 3σ

\[\text{With BKG (300)} \]
\[\text{Without BKG} \]

\[\rightarrow \text{Even with a large number of background events, discovery is still possible} \]
\[\rightarrow \text{Only low number of WIMP events are required at low masses} \]

\[\rightarrow \text{A discovery (>3σ@90%CL) with BKG is possible down to 10^{-3}-10^{-4} pb} \]
Mass – cross section

Dark Matter signature

Galactic Halo shape

8 parameters simultaneously constrained by only one experiment

Directional Detection: identification

J. Billard et al., PRD 2011

Moriond-VHEPU, March 14th 2013

D. Santos (LPSC-Grenoble)
2007 – Boulby, England
2009 – MIT, Boston, USA
2011 – Aussois, France
2013 – Toyama, Japan

http://ppwww.phys.sci.kobe-u.ac.jp/~newage/cygnus2013/
How big is a 1 tonne directional detector?

14 m x 14 m x 14 m directional dark matter detector

Mini-BooNE MINOS SNO Super-Kamiokande