COUPP: Bubble Chambers for Dark Matter Detection

Eric Vázquez Jáuregui

SNOLAB

Rencontres de Moriond 2013
La Thuille, Italy; March 9-16, 2013
COUPP Collaboration

M. Ardid¹, E. Behnke², T. Benjamin², M. Bou-Cabo¹, S.J. Brice³, D. Broemmelsiek⁵, J.I. Collar⁴, P.S. Cooper³, M. Crisler³, C.E. Dahl³, J. Hall¹, C. Harnish², I. Levine², W.H. Lippincott³, D. Maurya⁶, T. Nania³, R. Neilson⁴, S. Priya⁶, E. Ramberg³, A.E. Robinson⁴, A. Sonnenschein³, E. Vázquez Jáuregui⁷

¹Politecnica Valencia
²Indiana University South Bend
³Fermi National Accelerator Laboratory
⁴KICP - University of Chicago
⁵Northwestern University
⁶Virginia Tech
⁷SNOLAB
COUPP bubble chambers

- Target material: superheated CF_3I
 spin-dependent/independent (C_3F_8, C_4F_{10})

- Particles interacting evaporate a small amount of material: bubble nucleation

- Cameras record bubbles

- Piezo sensors detect sound

- Recompression after each event
COUPP bubble chambers

- The ability to reject electron and gamma backgrounds by arranging the chamber thermodynamics such that these particles do not even trigger the detector
- The ability to suppress neutron backgrounds by having the radioactively impure detection elements far from the active volume and by using the self-shielding of a large device and the high granularity to identify multiple bubbles
- The ability to build large chambers cheaply and with a choice of target fluids
- The ability to increase the size of the chambers without changing the size or complexity of the data acquisition
- Sensitivity to spin-dependent and spin-independent WIMP couplings
Bubble nucleation

Dependence of bubble nucleation on the total deposited energy and dE/dx

- **Region of bubble nucleation at 15 psig**

- **Backgrounds:** electrons, 218Po, 222Rn

- **Signal processes of Iodine, Fluorine and Carbon nuclear recoils**

 insensitive to electrons and gammas
COUPP bubble chambers

- Alpha decays:
 Nuclear recoil and
 40 µm alpha track
 1 bubble

- Neutrons:
 Nuclear recoils
 mean free path \(\sim 20 \text{ cm} \)
 3:1 single-multiple ratio
 in COUPP4

- WIMPs:
 Nuclear recoil
 mean free path > \(10^{12} \text{ cm} \)
 1 bubble
SNOLAB

deepest and cleanest large-space international facility in the world

• 2 km underground near Sudbury, Ontario

• ultra-low radioactivity background environment Class 2000

• Physics programme focused on neutrino physics and direct dark matter searches
COUPP4 features

- Energy: threshold detector
- Background suppression:
 - UG at SNOLAB
 - Water shielding
 - Clean materials
- Background discrimination:
 - Neutrons:
 - Multiples bubbles
 - Nuclear recoil, $l \sim 20 \text{ cm}$
 - α: acoustic parameter
 - Nuclear recoil, $40 \mu\text{m}$ track
- Large target mass: getting there
COUPP4 at SNOLAB

• Installation in summer 2010
• First Physics run begins Nov. 3, 2010
 (second Physics run in 2012)
• Run settings (P=30.5 psia):
 – 17.4 days at 8 keV (39°C)
 – 21.9 days at 10 keV (36°C)
 – 97.3 days at 15 keV (33.5°C)
• 4.048 kg of CF$_3$I
• Calibrations:
 – Neutron calibration runs: AmBe and 252Cf
 – Continuous source of 222Rn
COUPP4 at SNOLAB: data analysis

- Examination of images: algorithm searching for clusters among pixels that changed between consecutive frames
- Examination of pressure rise: fit to the rate of pressure rise by a quadratic time dependence for bubbles in the bulk
- Examination of the acoustic signal

Hand-scanned to resolve disagreement

Overall efficiency for all data quality and fiducial volume cuts is $82.5 \pm 1.9\%$
COUPP4 at SNOLAB

Acoustic transducer signals digitized with a 2.5 MHz sampling rate and recorded for 40 ms for each event.

The nuclear recoil acceptance of the AP cut $95.8 \pm 0.5\%$.

3 ways of counting:

- Images: cameras
- Pressure rise: transducer
- Acoustic parameter: piezos
COUPP4 at SNOLAB: calibrations

Radon fraction = 0.95 ± 0.05

^{222}Rn (101 keV), ^{218}Po (112 keV), ^{214}Po (146 keV)

GEANT and MCNP simulations

- Bubble rate is 50% higher

![Graphs and plots related to calibration results]
COUPP4 at SNOLAB: calibrations

- Lower efficiency for 19F and 12C recoils
- Seitz model for 127I recoils

Seitz model:
- 6 keV 19F recoils, C_4F_{10} (PICASSO)
- 101 keV 218Po recoils, C_4F_{10} (PICASSO)
- 101 keV 218Po recoils, CF_3I

Understand efficiency for 15 keV recoils in CF_3I

SRIM \rightarrow TRIM calculation
COUPP4 at SNOLAB: results

456 kg-days, 2474 alphas
1733 alphas (15 keV data)
5.3 alpha decays/ kg-day
95% from radon
> 98.9% α rejection
> 99.3% (15 keV data)

- 6 events at 8 keV
- 6 events at 10 keV (2 triples)
- 8 events at 15 keV (1 double)

20 WIMP candidates

(Netrions from rock: < 1/year)
COUPP4 at SNOLAB: results

Internal neutron background

- **View-ports:**
 0.5 ppm ^{238}U and 0.8 ppm ^{232}Th, (~ 5 events)

- **Piezos:**
 4.0 ppm ^{238}U, 1.9 ppm ^{232}Th and ^{210}Pb, (~ 2 events)

 Fission and (α,n) on light elements

New piezos built
(low background salts)

New view-ports
(synthetic silica)
COUPP4 at SNOLAB: Physics run II

- New physics run in 2012
- 8 singles, 1 double, 1 triple

Hydraulics failed

- Replace more components
- ICP-MS assay

Piezos detached from IV

Refurbishing the detector

Different target material

Eric Vázquez-Jáuregui

Moriond 2013

March 14, 2013
COUPP4 at SNOLAB: sensitivity
COUPP60 at SNOLAB

Eric Vázquez-Jáuregui Moriond 2013 March 14, 2013
COUPP60

Engineering run at Fermilab: successful commissioning
COUPP60 moved to SNOLAB

• Ready for physics run by the end of the month
Calibrations

• γ and neutron calibrations
 - AmBe and 252Cf
 - 60Co and 133Ba

• COUPP Iodine Recoil Threshold Experiment
 - Low energy Iodine recoils
 - π beam and silicon trackers

• 88Y/Be calibration chamber
 - Understand response to low energy recoils
 - Monochromatic low energy neutrons
COUPP4-Lite

- C_3F_8 as target material
- Spin-dependent sensitivity
- Low energy threshold
- New hydraulics
- New pressure vessel

Physics run by mid 2013
COUPP500

- $> 10^{10}$ γ/β insensitivity
- $> 99.3\%$ acoustic α discrimination
- Multi-target capability
 SD- and SI-coupling
 High- and low-mass WIMPs
- Easily scalable, inexpensive to replicate
- Growing collaboration
 Newly merged with PICASSO

R&D phase
COUPP sensitivity plots

\[WIMP \text{ mass} \ [\text{GeV/c}^2] \]

\[SD \ WIMP-\text{proton cross section} \ [\text{cm}^2] \]

\[SI \ WIMP-\text{nucleon cross section} \ [\text{cm}^2] \]

- PICASSO 2012
- COUPP 2012
- Super-K (soft)
- Super-K (hard)
- IceCube
- CMS (A-V)

- COUPP−500
- 250L C\(_3\)F\(_8\), 3 keV
- COUPP−4 Lite
- COUPP−500
- 250L C\(_3\)F\(_8\), 15 keV
- COUPP−60

- DAMA
- CRESST
- CDMS
- XENON10/100
- CoGent

Eric Vázquez-Jáuregui
Moriond 2013
March 14, 2013
Conclusions

• Physics run at SNOLAB completed for COUPP4
 – Results published in 2012
 – Spin-dependent competitive limit achieved
 – Excellent acoustic alpha rejection: > 98.9%

• COUPP family of detectors making huge improvements
 – COUPP60 at SNOLAB:
 Physics run by the end of the month (with 38kg)
 – Calibrations, calibrations and calibrations:
 CIRTE, 88Y/Be, gamma, neutron, ...
 – COUPP4-Lite: C_3F_8, by mid this year
 – COUPP500 is coming fast
Conclusions

• Physics run at SNOLAB completed for COUPP4
 – Results published in 2012
 – Spin-dependent competitive limit achieved
 – Excellent acoustic alpha rejection: > 98.9%

• COUPP family of detectors making huge improvements
 – COUPP60 at SNOLAB:
 Physics run by the end of the month (with 38kg)
 – Calibrations, calibrations and calibrations:
 CIRTE, 88Y/Be, gamma, neutron, ...
 – COUPP4-Lite: C_3F_8, by mid this year
 – COUPP500 is coming fast

Stay tuned for more bubbles!

Eric Vázquez-Jáuregui
Moriond 2013
March 14, 2013