THE LARGE UNDERGROUND XENON EXPERIMENT

Michael Woods
University of California, Davis

Rencontres de Moriond – Very High Energy Phenomena in the Universe – March, 14 2013
The LUX Collaboration

Brown
- Richard Gaitskell, PI, Professor
- Simon Fiorucci, Research Associate
- Monica Pangilinan, Postdoc
- Jeremy Chapman, Graduate Student
- Carlos Hernandez Faham, Graduate Student
- David Malling, Graduate Student
- James Verbus, Graduate Student

Case Western
- Thomas Shutt, PI, Professor
- Dan Akerib, PI, Professor
- Mike Dragowsky, Research Associate Professor
- Tom Coffey, Research Associate
- Carmen Carmona, Postdoc
- Karen Gibson, Postdoc
- Adam Bradley, Graduate Student
- Patrick Phelps, Graduate Student
- Chang Lee, Graduate Student
- Kati Pech, Graduate Student
- Tim Ivancic, Graduate Student

Imperial College London
- Henrique Araujo, PI, Senior Lecturer
- Tim Sumner, Professor
- Alastair Currie, Postdoc

Lawrence Berkeley + UC Berkeley
- Bob Jacobsen, PI, Professor
- Victor Gehman, Scientist
- David Taylor, Engineer
- Mia Ihm, Graduate Student

Lawrence Livermore
- Adam Bernstein, PI, Leader of Adv. Detectors Group
- Dennis Carr, Mechanical Technician
- Kareem Kaszaz, Staff Physicist
- Peter Sorensen, Staff Physicist
- John Bower, Engineer

LIP Coimbra
- Isabel Lopes, PI, Professor
- Jose Pinto da Cunha, Assistant Professor
- Vladimir Solovov, Senior Researcher
- Luiz de Viveros, Postdoc
- Alexandre Lindole, Postdoc
- Francisco Neves, Postdoc
- Claudio Silva, Postdoc

SD School of Mines
- Xinhua Bai, PI, Professor

Texas A&M
- James White, PI, Professor
- Robert Webb, Professor
- Rachel Mannino, Graduate Student
- Clement Sofka, Graduate Student

UC Davis
- Mani Tripathi, PI, Professor
- Robert Svedoba, Professor
- Richard Lander, Professor
- Britt Hollbrook, Senior Engineer
- John Thomson, Senior Mechanic
- Matthew Sydziej, Postdoc
- Richard Ott, Postdoc
- Jeremy Mock, Graduate Student
- James Morad, Graduate Student
- Nick Walsh, Graduate Student
- Michael Woods, Graduate Student
- Sergey Uvarov, Graduate Student

UC Santa Barbara
- Harry Nelson, PI, Professor
- Mike Witherei, Professor
- Dean White, Engineer
- Susanne Kyre, Engineer
- Curt Nehrkorn, Graduate Student

University College London
- Chamkaur Ghag, PI, Lecturer

University of Edinburgh
- Alex Murphy, PI, Reader
- James Dobson, Postdoc
- Lee Reichhart, Graduate Student

University of Maryland
- Carter Hall, PI, Professor
- Attilla Dobi, Graduate Student
- Richard Knoche, Graduate Student

University of Rochester
- Frank Wolfs, PI, Professor
- Wojtek Skutski, Senior Scientist
- Eryk Dzuslawicz, Graduate Student
- Mongkol Moongweluwan, Graduate Student

University of South Dakota
- Dongming Mei, PI, Professor
- Chao Zhang, Postdoc
- Dana Byram, Graduate Student
- Chris Chiller, Graduate Student
- Angela Chiller, Graduate Student

Yale
- Daniel McKinsey, PI, Professor
- Peter Parker, Professor
- James Nikkel, Research Scientist
- Sidney Cahn, Lecturer/Research Scientist
- Alexey Lyashenko, Postdoc
- Ethan Bernard, Postdoc
- Blair Edwards, Postdoc
- Kevin O’Sullivan, Postdoc
- Nicole Larsen, Graduate Student
- Evan Pease, Graduate Student
- Brian Tennyson, Graduate Student

16 Institutions, 4 European
Dark Matter

- Direct WIMP detection.
- Present in most SSM.
- Elastic scattering.
 - $\sigma \sim A^2$
- Nuclear recoil
 - Looking in \sim5-25 keV$_{nr}$ range.

- Dark Matter Pie Chart
 - Today is 2013/3/14…
LUX Layout

- Two titanium cryostats in a water shield/muon veto.
Dual Phase Xe TPC

• Energy deposition causes prompt scintillation and ionization.

• Light observed by 122 PMTs.

• Primary scintillation signal (S1)
 • Secondary ionization signal (S2)
 • Drift e⁻ to gas gap.

• X,Y
 • Use PMT hit map.

• Z
 • S1-S2 time separation
Why Xenon?

- 130 nucleons
- High density \rightarrow self shielding.
- Transparent to its own scintillation light.
- Allows fiducialization of detecting medium.
 - Great for scaling experiment size.
- Commercial purification systems available.
- Condenses above LN temperatures (-108°C).
Nuclear Recoil Discrimination

Recombination relatively enhanced for NR

>99.5% ER Rejection
50% NR acceptance
Shielding

- **Xenon**
 - 3 g/cm²
 - Software optimized fiducialization.
 - ~100 kg
 - It’s quiet in the middle: $x10^{-6}$ reduction.

Water Tank Background Reductions

- Water Tank
 - Gamma reduction: $x10^{-9}$
 - Neutron reduction: $x10^{-3}$
 - Active shield for muon tagging.

Punchline: External backgrounds subdominant
Backgrounds

<table>
<thead>
<tr>
<th>PMT</th>
<th>Activity [mBq/PMT]</th>
<th>^{238}U (^{226}Ra)</th>
<th>^{232}Th (^{228}Ra)</th>
<th>^{40}K</th>
<th>^{60}Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>R8778</td>
<td>9.5 ± 0.6</td>
<td>2.7 ± 0.3</td>
<td>66 ± 6</td>
<td>2.6 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>R11410 MOD</td>
<td><0.4</td>
<td><0.3</td>
<td><8.3</td>
<td>2.0 ± 0.2</td>
<td></td>
</tr>
</tbody>
</table>

- Detector component radiopurity database.
 - Ti, Cu, PTFE, PMTs, bolts, etc.

- PMTs
 - High QE (~33%)
 - *Largest BG in LUX*
 - ~1 n/yr/PMT
LUX Deployment at SURF

- Sanford Underground Research Facility
- Homestake mine
- Surface run
 - These results.

- Running at 4850 ft. below surface
 - 1480 km
 - 4300 m.w.e.

4.4 x 10^{-9} \mu/cm^2/sec muon rate
Calibrations

- **External sources**
 - **Source tube**
 - 137Cs, 252Cf, AmBe, 57Co, 133Ba, 22Na, 60Co, 228Th

- **Internal**
 - **Injection**
 - 222Rn, 83mKr
 - **Activation**
 - 129mXe, 131mXe

137Cs (662 keV γ) Light Yield

Activated xenon

- 164 keV
- 236 keV (39.6 + 196.6 keV)
LUXSim/NEST

• Much work towards accurate and precise simulation.
 • Geometry
 • Radioactivity
 • Physics

• Noble Element Simulation Technique*
 • Enhancing Geant4-based simulations of liquid and gaseous noble elements.
 • Fast microphysics.
 • Correct cesium energy resolution from first principles.

*2011 JINST 6 P10002; arxiv:1106:1613
Position Reconstruction

- Mercury position reconstruction algorithm
 - ZEPLIN-III
 - arXiv: 1112.1481v1

- Grid Events
 - Events “shaped” around grid due to E-field.
 - Discern 5 mm grid pitch
 - Grid α events.
 - Good predictor.

- 214Bi-214Po coincidence
 - 214Bi β followed by 214Po α
 - 7 mm res. with bulk α events.

C. Faham
Established Run Parameters

- 100 days of stable running above ground.
- Proved sub systems functional to intended surface run design parameters.

- Light Collection
 - 8 phe/keVee (center of detector, 662 keV)
 - ≥4 phe/keVee (field-adjusted, scaled to 122 keV)
 - 4π PTFE “Light Cage”

- Purity/Drift time
 - 35 slpm (300 kg/day)
 - Best electron drift time: 204 ± 6 (stat) μs
 - Longest drift length: 25 cm
Underground Deployment

July 11-12, 2012
Underground Deployment
Underground Deployment
Current Status

- Underground
- Water tank filled
- Online
- Condensed
- Purifying
- Calibrating
- *Preparing for 60 day DM run.*
DM Limits for 300 day run

Parameter Assumptions

- Realistic run parameters.
- 30,000 kg-days
- 15% light collection.
- 11 m photon absorption length.
- Modest purity improvement.
- 50% NR acceptance.
- $4.3 \text{ keV}_{\text{nr}}$ – $25 \text{ keV}_{\text{nr}}$
Summary

370 kg Dual Phase Liquid Xe TPC
- 3D imaging
- Effective Xe purification – 300 kg/day at <10 ppt Krypton
- Conservative Analysis Assumptions:
 >99.5% ER background rejection with 50% NR acceptance, $E_{th} > 4.3$ keV$_{nr}$

Backgrounds
- External: large water shield with active muon veto
 - very effective for rock γ and n and muon-related neutrons
 - very low γ backgrounds from ultra-pure water
- Internal: reduced by material selection and fiducialization
 - demonstrated BG $\gamma + \beta < 5 \times 10^{-4}$/keVee/kg/day, dominated by PMTs
 - neutrons (α,n) and fission are subdominant

Physics Reach
- DM $\sigma \sim 2 \times 10^{-45}$ cm2 in 2 weeks live time.
- Expect $\sigma < 3 \times 10^{-46}$ cm2 with 300 day run.

Status
- Underground, online, condensed, purifying, calibrating.
- Preparing for 60 day DM run.
BACKUP SLIDES
Nuclear Recoil Discrimination

Recombination relatively enhanced for NR

Electron Recoil

Nuclear Recoil

>99% ER Rejection
50% NR acceptance

Energy Deposition

Ionization Signal

Recombination

Scintillation Signal

Ionization

Xe$^+$ + e$^-$

+Xe

Xe$_2^+$

+ e$^-$

Xe*

Xe** + Xe

2Xe

2Xe

Xe$_2^*$

Cs (gamma source)

AmBe (neutron source)

175 nm

Triplet 27 ns

Singlet 3 ns

175 nm
Conservative calculations for these processes indicate that <0.01 events are expected as a consequence of this radon injection in the WIMP region of interest in a 300-day run.

214Bi lone beta (18% BR) \rightarrow Po-214 7.7 MeV alpha

$Q = 3.2 \text{ MeV}$

Half-life is 164 μs

Range of beta (mean E, 642 keV) in LXe is \sim1.5 mm.

Alpha range in LXe is \sim50 μm.

This coincidence event is highly localized in x,y,z
LUX DAQ/Data Flow

Data Acquisition:
- Custom built analog amplifier chain - Maximize signal sensitivity
- Sophisticated trigger system based on DDC-8 - Maximize low energy threshold and trigger capabilities.
- Pulse Only Digitization (POD) eliminates baseline from the data stream - Improve maximum acquisition rate to 1.3kHz
Thermosyphon

- Passive cooling system using LN₂ bath
- High thermal conductivity (~55 kW/K/m)
- Temperature controlled via N₂ pressure and PID heater
The first 76 days of LUX

Comparing nominally equivalent kg-days for 100 kg LUX fiducial versus 34 kg XENON fiducial but LUX has much greater sensitivity/kg-day because of cleaner signal/fewer BG events.

LUX (Monte Carlo)

~20 ER events
~1 WIMP / 8 days
76 days x 100 kg fiducial

XENON100

~180 ER events
225 days x 34 kg fiducial

arXiv:1104.2549

LUX signal and background expectation for 7,600 kg-days net exposure. WIMP events assume m = 100 GeV, \(\sigma = 3 \times 10^{-45} \) cm². Assumes 100 kg fiducial. Given very low ER rate, can significantly increase fiducial in early running.

XENON100 7,600 kg-days result for comparison. Note higher ER rate - ~180 events primarily due to Compton scattering of external gamma background.