Constraints on Axion-Like Particles from H.E.S.S. observations of PKS 2155-304

D. Wouters* and P. Brun*
for the H.E.S.S. Collaboration

* CEA, Irfu, Centre de Saclay, F-91191 Gif-sur-Yvette, France

Réncontres de Moriond 2013
Axion-like particles

• 1977: U(1) Peccei-Quinn symmetry
 Possible explanation for strong CP problem
• particle associated to the breaking of the symmetry: Axion
• Coupling with two photons:

\[a - g_{\gamma a} - \gamma \]

Axions: \(g_{\gamma a} \propto m \)

• Axion-like particles (ALPs): \(g_{\gamma a} \) and \(m \) unrelated but same phenomenology
• Possible explanation for dark matter (for specific \(m, g_{\gamma a} \))
• CAST (solar ALPs): \(g_{\gamma a} < 8 \times 10^{-11} \text{ GeV}^{-1} \) for \(m < 0.01 \text{ eV} \)
Axion-like particles in astrophysics

- γ/ALP oscillations in external magnetic field
 \[E_\gamma > \frac{m_a^2}{2 g_{a\gamma} B} \]

- Possibly modify opacity of the universe to TeV γ-rays

Sanchez Conde et al. 2009, PRD
Horns et al. 2012, PRD
De Angelis et al. 2007, PRD
Simet et al. 2008, PRD
...
Phenomenology in turbulent magnetic field

- Magnetic fields in astrophysics usually turbulent
- ALPs \Rightarrow Strong irregularities in energy spectra around

\[E_c = \frac{m^2}{2 g_{\gamma a} B} \]

\[B = 1 \, \text{nG} \]
\[\text{Coherence length } s = 1 \, \text{Mpc} \]
\[g_{\gamma a} = 8 \times 10^{-11} \, \text{GeV}^{-1} \]
\[m = 2 \, \text{neV} \]

$\Rightarrow E_c = 1 \, \text{TeV}$

- Amplitude of irregularities driven by $g_{\gamma a}$
- Position in energy driven by m
- Signature detectable in TeV spectra
Choice of the source

• Brightest AGN observed by H.E.S.S. : PKS 2155-304

• Strong flare in July 2006: ~ 7 Crab flux above 200 GeV

 Large statistics: accurate spectrum and sensitivity to irregularities

• Galaxy cluster observed around PKS 2155-304

 Magnetic field in the cluster

• Redshift $z = 0.116$

 Magnetic field in intergalactic medium
Modeling of magnetic fields

- Magnetic fields in galaxy clusters
 - Measurement by Faraday rotation
 - \(B > 1 \, \mu G \)
 - Kolmogorov power spectrum on scales up to 10 kpc

- PKS 2155-304 cluster
 - Size of the cluster: 370 kpc
 - No measurement of \(B \) and turbulence power spectrum
 - Assumes \(B = 1 \, \mu G \), Kolmogorov power spectrum on scales 1→10 kpc
 - Conservative description

- Intergalactic magnetic field
 - \(10^{-16} \, G < B < 10^{-9} \, G \)
 - Assumes turbulence on one scale, 1 Mpc
PKS 2155-304 observations with H.E.S.S.

- Observations with 4 telescopes
- Dataset from 2006 flare: background free
- Energy resolution \(\sim 15\%\), threshold of 250 GeV
- 45505 reconstructed \(\gamma\)-rays

Unfolded spectrum:

Well –modeled with log-parabola with EBL absorption

(from Franceschini et al. 2008, A&A)

\[
\frac{dN}{dE} \propto \left(\frac{E}{1\text{ TeV}} \right)^{-\alpha - \beta \log E/1\text{ TeV}} e^{-\tau_{\gamma\gamma}(E)}
\]

- \(\alpha = 3.18 \pm 0.03\)
- \(\beta = 0.32 \pm 0.02\)
- \(F(E > 200 \text{ GeV}) = 8.38 \pm 0.43 \times 10^{-10} \text{ cm}^{-2}\text{s}^{-1}\)
Method for the constraints (1)

- Intrinsic spectral shape unknown
- Estimate irregularities in spectrum without spectral shape assumption:
 \[I = \sum \delta_i^2 \]

- Look for anomalous deviations in triplet of successive bins
- Estimator of irregularities in spectrum
- Assumption: intrinsic spectrum log-linear on scales of 3 bins
Method for the constraints (2)

- Template of irregularities depends on exact magnetic field structure (unknown)
- Simulations of spectra for given \((m, g_{\gamma a})\) with various magnetic field structure, in same observation conditions
- Spectral shape: fitted on data * ALP irregularity template
- Reconstruction with same analysis chain

\[\text{P.D.F. of the irregularity estimator for given } (m, g_{\gamma a}) \]

- Compare with estimator value measured on data
Method for the constraints (3)

- Exclusion on a statistical basis:

- Measured value slightly depends on the binning

 Estimate fluctuations with different bin sizes, take upper value
Constraints (1)

- Constraints expressed in parameters making them independent of B and L (size of conversion domain)

\[\epsilon = \frac{m}{\sqrt{B}} \]

\[\Gamma = \frac{g_{\gamma a} BL}{2\sqrt{L/s}} \]

H.E.S.S. exclusions at 95% C.L.

Galaxy cluster Magnetic Field

Intergalactic Magnetic Field
• Translation to $g_{\gamma a}$ and m with:

$$L \rightarrow \text{size of conversion domain}$$

$$s \rightarrow \text{coherence length}$$

<table>
<thead>
<tr>
<th>Constraints</th>
<th>B [µG]</th>
<th>L [kpc]</th>
<th>L/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster magnetic field</td>
<td>1</td>
<td>370</td>
<td>37</td>
</tr>
<tr>
<td>IGMF</td>
<td>1</td>
<td>478</td>
<td>505</td>
</tr>
</tbody>
</table>

H.E.S.S. exclusions at 95 % C.L.:

- Intergalactic Magnetic Field (optimistic)
- Galaxy Cluster magnetic field (conservative)
- CAST limit
Conclusion

• ALPs usually considered in γ-ray astronomy for «transparency hint»

• ALPs signature: irregularities in γ-ray spectra

• Mixing considered for:
 – Galaxy cluster magnetic field (conservative)
 – Intergalactic magnetic field (optimistic)

• Constraints in limited mass range

• First exclusion from TeV γ-ray astronomy