OPTIMIZATION OF ESPRESSO
FUNDAMENTAL PHYSICS TESTS

Ana Catarina Leite
Carlos Martins

Relevant references:

• Leite et al. Phys. Rev. D 90, 063519 (2014);
• More In prep.
Echelle SPectrograph for Rocky Exoplanet- and Stable Spectroscopic Observations

- 380-700nm spectral coverage
- High resolution and stability (Laser Frequency Comb)
- 80% Rocky Planets, 10% Varying Constants, 10% to be decided: ToO + Exquisite Science
Observational Strategy

Known possible targets

- α measurements from absorption systems in Quasar Spectra
- Data from UVES
 - 154 measurements
 - Uncertainties of the measurements
 - Brightness
 - Exposure time
 - Redshift
 - Position
 - Details from spectra ($q \propto \lambda$ of each element)
Observational Strategy

Known possible targets
Observational Strategy

Next steps

- Add Keck, Large Program and other measurements

Priority System:
- Uncertainty lower than 10ppm
- Measurements with anchors and sensitivity transitions (ΔQ)
- Brightness
- Sky position
- Simplicity of the spectra
Coupling between the scalar field and the electromagnetism

\[\mathcal{L}_{\phi F} = -\frac{1}{4} B_F(\phi) \, F_{\mu \nu} F^{\mu \nu} \]

Gauge kinetic function is linear

\[B_F(\phi) = 1 - \zeta k (\phi - \phi_0) \]

\[\frac{\Delta \alpha}{\alpha} \equiv \frac{\alpha - \alpha_0}{\alpha} = \zeta k (\phi - \phi_0) \]

For a flat Friedmann-Robertson-Walker Universe with a canonical scalar field

\[\dot{\phi}^2 = (1 + \omega(z))\rho_\phi \]

\[\phi(z) - \phi_0 = \frac{\sqrt{3}}{k} \int_0^z \sqrt{1 + \omega(z)} \left(1 + \frac{\rho_m}{\rho_\phi}\right)^{-1/2} \frac{dz}{1 + z} \]
Variation of fundamental parameters and dark energy: A principal component approach

1Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
2Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4150-007 Porto, Portugal
3Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
4Dipartimento di Fisica, Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185 Roma, Italy

(Received 12 October 2011; revised manuscript received 8 August 2012; published 17 September 2012)

We discuss methods based on principal component analysis to constrain the dark energy equation of state using a combination of Type Ia supernovae at low redshift and spectroscopic measurements of varying fundamental couplings at higher redshifts. We discuss the performance of this method when future better-quality data sets are available, focusing on two forthcoming European southern observatory (ESO) spectrographs—Echelle spectrograph for rocky exoplanet and stable spectroscopic observations (ESPRESSO) for the very large telescope (VLT) and Cosmic dynamics explorer (CODEX) for the European extremely large telescope (E-ELT)—which include these measurements as a key part of their science cases. These can realize the prospect of a detailed characterization of dark energy properties almost all the way up to redshift 4.

DOI: 10.1103/PhysRevD.86.063515

PACS numbers: 98.80.–k, 98.80.Jk

Fundamental cosmology from precision spectroscopy: Varying couplings

1Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4150-007 Porto, Portugal
2Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
3Faculty of Sciences and Centre for Astronomy and Astrophysics, University of Lisbon, 1749-016 Lisbon, Portugal

(Received 2 July 2014; published 22 September 2014)

The observational evidence for the acceleration of the Universe demonstrates that canonical theories of cosmology and particle physics are incomplete, if not incorrect, and that new physics is out there, waiting to be discovered. Forthcoming high-resolution ultrastable spectrographs will play a crucial role in this quest for new physics, by enabling a new generation of precision consistency tests. Here we focus on astrophysical tests of the stability of nature’s fundamental couplings, and by using principal component analysis techniques further calibrated by existing VLT data we discuss how the improvements that can be expected with ESPRESSO and ELT-HIRES will impact on fundamental cosmology. In particular we show that a 20 to 30 night program on ELT-HIRES will allow it to play a leading role in fundamental cosmology.

DOI: 10.1103/PhysRevD.90.063519

PACS numbers: 98.80.–k, 98.80.Jk
Principal Component Analysis

- Likelihood function
 \[
 L(\omega_i) = \sqrt{\frac{2\pi}{A}} \exp \left[-\frac{1}{2} \sum_{i,j=1}^{N} (\mu - \mu_F)_i D_{ij}^{-1} (\mu - \mu_F)_j \right]
 \]
 \[
 A = \sum_{i,j} C_{ij}^{-1}
 \]
 \[
 D_{ij}^{-1} = C_{ij}^{-1} - \frac{1}{A} \sum_{k,l=1}^{N} C_{kj}^{-1} C_{li}^{-1}
 \]

- Fisher’s Matrix
 \[
 F_{kl} = -\frac{\partial^2 \ln L}{\partial \omega_k \partial \omega_l} \bigg|_{\omega^F}
 \]

- Dark energy parameterization, \(\omega(z)\)
 \[
 \omega(z) = \sum_{i=1}^{N} \omega_i \theta_i(z) \quad \longrightarrow \quad \omega(z) = \sum_{i=1}^{N} \alpha_i e_i(z)
 \]
Sample Result

Baseline
- ESPRESSO: \(N=30\); \(\sigma_{\Delta \alpha/\alpha}=6 \times 10^{-7}\)
- ELT-HIRES: \(N=100\); \(\sigma_{\Delta \alpha/\alpha}=1 \times 10^{-7}\)

Ideal
- ESPRESSO: \(N=100\); \(\sigma_{\Delta \alpha/\alpha}=2 \times 10^{-7}\)
- ELT-HIRES: \(N=150\); \(\sigma_{\Delta \alpha/\alpha}=3 \times 10^{-8}\)

<table>
<thead>
<tr>
<th>Model</th>
<th>ESPRESSO</th>
<th>ELT-HIRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>649.8</td>
<td>19.5</td>
</tr>
<tr>
<td>Step</td>
<td>2231.6</td>
<td>66.9</td>
</tr>
<tr>
<td>Bump</td>
<td>1420.1</td>
<td>42.6</td>
</tr>
</tbody>
</table>

N\(_o\) of nights needed to achieve an uncertainty equal to that expected from a SNAP-like dataset of 3000 Type Ia supernovas,
Supernova Surveys

- SNAP - 3000 SN - z: 0 - 1.7
- MID - 1700 SN - z: 0.75 - 1.5
- ELT - 50 SN - z: 1 - 5
- TMT - 250 SN - z: 1 - 3

Figure of Merit = \(\frac{1}{\sigma_1 \sigma_2} \)

| TABLE V. Figures of merit for the dark energy equation of state, assuming the 'Ideal' scenario for \(\alpha \) measurements and 30 redshift bins. For each pair of entries the top and bottom lines respectively correspond to the Constant and Step fiducial models. |
|---------------------------------|----------------|----------------|----------------|
| LOW (c) | 409 | 996 | 58684 |
| LOW (s) | 404 | 554 | 11228 |
| LOW + MID (c) | 839 | 1352 | 58737 |
| LOW + MID (s) | 831 | 955 | 11295 |
| LOW + ELT (c) | 881 | 1515 | 79431 |
| LOW + ELT (s) | 881 | 1064 | 18176 |
| LOW + MID + ELT (c) | 1973 | 2537 | 79639 |
| LOW + MID + ELT (s) | 1971 | 2133 | 18652 |
| LOW + TMT (c) | 631 | 1089 | 58740 |
| LOW + TMT (s) | 634 | 712 | 11335 |
| LOW + MID + TMT (c) | 1253 | 1443 | 58846 |
| LOW + MID + TMT (s) | 1260 | 1328 | 11514 |
Supernova Surveys

Truncation methods:
- Risk vs Normalization

Scenarios:
- Baseline vs Ideal

Importance of high redshift (TMT vs ELT)
Conclusions

- Measurements of α can be used to constrain dark energy, complementing supernovas with the advantage of a larger redshift lever arm.

- Existing VLT datasets, although not ideal, give clues on what we will be able to achieve with future Spectrographs.

- Dark energy equation of state reconstruction improves when we combine the Supernova datasets with α measurements.

- ELT will be important to reconstruct the equation of state at high redshift ($z > 2$).

- Wavelength range of the spectrograph influences redshift coverage and lines that can be measured.

- There are more considerations to keep in mind when we try to optimize an observational strategy.