Plan of presentation

- Introduction and some references
- Emerging related topics
- Short-range forces and neutrons
- State of the art
- Recent improvements
- Conclusions and prospects
Gravitation: 100 years after GR

La Thuile, Aosta Valley, Italy
March 21-28, 2015

Sources of Gravitational Waves
Search for transient, bursts, stochastic, events
Status of gravitational wave detectors
Space borne detectors
Atomic gravitational detectors
Fundamental science with gravitational waves
Tests of the equivalence principle
(classical and with cold atoms)
Astrometry, solar system ephemerides
Observational gravity tests
Clocks, lasers and fundamental constants
CPT and Lorentz symmetry
Short range gravity and Casimir effect
Long range gravity
Dark matter, dark energy
Gravitation: 100 years after GR

La Thuile, Aosta Valley, March 21-28, 2015

Sources of Gravitational Waves
Search for transient, bursts, stochastic, events
Status of gravitational wave detectors
Space borne detectors
Atomic gravitational detectors
Fundamental science with gravitational waves
Tests of the equivalence principle (classical and with cold atoms)
Astrometry, solar system ephemerides
Observational gravity tests
Clocks, lasers and fundamental constants
CPT and Lorentz symmetry
Short range gravity and Casimir effect
Long range gravity
Dark matter, dark energy

Our gifts for the Moriond-50 Conference

24.03.15

INSTITUT MAX VON LAUE - PAUL LANGEVIN

V.V. Nesvizhevsky
Neutrons and Gravity

SURPRISING QUANTUM BOUNCES

Surprising Quantum Bounces explores the fundamentals of quantum mechanics using a single phenomenon: quantum bounces of ultra-cold particles. Various examples of such “quantum bounces” are gravitational quantum states of ultra-cold neutrons (the first observed quantum states of matter in a gravitational field), the neutron whispering gallery (an observed matter-wave analog of the whispering gallery effect well known in acoustics and for electromagnetic waves), and gravitational and whispering gallery states for anti-matter atoms that remain to be observed. These quantum states are an invaluable tool in the search for additional fundamental short-range forces, in exploring the gravitational interaction and quantum effects of gravity, in probing physics beyond the standard model, and in furthering studies into the foundations of quantum mechanics, quantum optics, and surface science.

This unique book is full of eye-catching problems, highly intuitive and rigorous description, a stimulatint set of problems, and suggestions for individual research. Although this book is primarily addressed to graduate and postgraduate students of quantum mechanics, it is also for anyone else who wants to discover or rediscover the mysterious and wonderful world of quantum physics.

The cover image, hand-drawn by Anna Nesvizhevskaia, shows a bouncy ball, which would move for considerably longer in the gravitational field of the Earth than a heavy object falling from the height of Pisa’s leaning tower. If the duration of the effects of gravity, the bouncy ball thus promises a longer observation time and greater precision. This bouncing concept is the foundation of the book: replace the ball with an elementary particle and you have quantum bouncing, perfect for precise measurements.

Valery Nesvizhevsky
Alexei Voronin

Imperial College Press
Neutrons and Gravity

In this book we aim to discuss fundamental ideas of physics by means of analyzing a single phenomenon of quantum bouncing, which provides numerous physical realizations. We discuss phenomena, which we believe are surprising, and we try to remove some prevailing illusions.

Preface

1. The Fast, the Heavy and the Free
 1.1 Classical Equivalence Principle 1
 1.2 Sailing Ship, Flying Jet and Falling Elevator:
 The Principle of Relativity 25
 1.3 Artificial Gravity and Curved Space: The Least Action
 Principle 44
 1.4 Συνωψις 61

2. When a Particle Becomes a Wave
 2.1 Quantum Fall 67
 2.2 Persistence of States 87
 2.3 The Principle of Relativity and the Equivalence Principle
 in Quantum Mechanics 110
 2.4 Συνωψις 124

3. Bouncing Neutrons
 3.1 Ultracold Neutrons and Challenge of Gravity 131
 3.2 Bouncing Wave: Penetration Through a Wall and
 Reflection from a Well 155
 3.3 Energy of Gravitational States: Shaken, Not Stirred 169
 3.4 Συνωψις 182

4. Bouncing Particles and Their Applications
 4.1 Whispering Gallery and Surface Potentials 187
 4.2 Fundamental Interactions and Quantum Bouncing 203
 4.3 Bouncing Anti-hydrogen and Gravity of Antimatter 215
 4.4 Συνωψις 235

Bibliography

Index

203
215
235
Quantum fall and equivalence principle

\[i\hbar \frac{\partial \Psi(z, t)}{\partial t} = \left(-\frac{\hbar^2}{2m} \frac{d^2}{dz^2} + M g z \right) \Psi(z, t). \]

\[l_0 = \sqrt{\frac{\hbar^2}{2mM g}}, \]

\[t_0 = \frac{\hbar}{\varepsilon_0} = \sqrt{\frac{2m\hbar}{M^2 g^2}}. \]

\[m = \frac{\hbar t_0}{2l_0^2}, \]

\[M = \sqrt{\frac{\hbar}{t_0 l_0 g}}. \]
More information can be found in:

Series of GRANIT workshops every 4th (Olympic) year; typically 50 participants from 12 countries on 4 continents.

GRANIT-2014, 2-7 March 2014, Les Houches, France

proceedings of the last are published in a dedicated issue “Gravitational Quantum Spectroscopy” of Advances in High Energy Physics.

Reviews. For instance:

And people involved in this research.
Quantum bouncing

Gravitational and whispering-gallery quantum states of neutrons

Essential features:
- The mirror is a uniform potential barrier, with no internal structure.
- The particles are reflected from the mirror elastically.
- Ultracold neutrons (UCNs) are unique particles for measuring such quantum states.
Quantum bouncing

Gravitational and whispering-gallery quantum states of neutrons

Essential features:
- The mirror is a uniform potential barrier, with no internal structure.
- The particles are reflected from the mirror elastically.
- Ultracold neutrons (UCNs) are unique particles for measuring such quantum states.

My fault. UCNs are not unique particles in this sense. Nearly ALL particles with sufficiently large wavelength and small energy are reflected elastically from surfaces.
Problem: attractive van der Waals/Casimir-Polder potential.

Solution: Quantum reflection is the limit of lowest energies (gravitational quantum states!!!) provides nearly total reflection of a particle from a mirror.

The quantum reflection is demonstrated by Maarten de Kieviet.

The importance of the low-energy limit was noticed by Alexei Voronin.
An illustration for quantum motion of a particle above a mirror in a gravitational field and that in an accelerated frame. The heights of the ball correspond to most probable heights of a neutron in 5th quantum state.
An “artistic” illustration for quantum motion of a particle built of normal matter (left) and antimatter (right) in a gravitational field.

Gravitational properties of antimatter have never been measured directly.
“Let us consider another possibility, an atom held together by gravity alone. For example, we might have two neutrons in a bound state. When we calculate the Bohr radius of such an atom, we find that it would be 10^8 light years, and that the atomic binding energy would be 10^{-27} Rydberg. There is then little hope of ever observing gravitational effects on systems which are simple enough to be calculated in quantum mechanics.” Brian Hatfield in [R.P. Feynman, F.B. Morinigo, and W.G. Wagner (1995) *Feynman Lectures on Gravitation* (Addison-Wesley, USA), p. 11]

Yesterday's sensation is today's calibration and tomorrow's background” [P.R. Feynman and V.L. Telegdi]
Various realizations

Gravitational quantum states of anti-hydrogen atoms as a tool for most precision direct measurements of gravitational properties of antimatter (GBAR collaboration). Advantages: precision spectroscopic methods, long observation time, localization in space and in energy -> smaller systematic effects and lower costs.

Fig. 1 A scheme of principle of the proposed shaping device: an H atom is released from the Paul trap (central spot) and it bounces a few times on the mirror surface of the bottom disk (arrows); if it scatters on the rough top surface, it annihilates (lightnings); otherwise, it escapes from the aperture between the two disks, and it falls to the detection plate where it annihilates (lightning on the detection plate). R is the radius of the bottom and top disks, r is the radius of central openings in the disks, h is the distance between the top surface of the bottom disk and the bottom surface of the top disk, H is the distance between the top of the detection plate and the top of the bottom disk, L is the horizontal distance between the initial spot and the detection point.
Gravitational quantum states of hydrogen atoms as a tool for prototyping the GBAR experiment with antihydrogen atoms (N. Kolachevsky, A.Yu. Voronin, V.V. N. et al) and also as an independent method for constraining short-range forces. Advantages: huge statistics, existing techniques.

The prototyping is based on symmetry of matter and antimatter relative to electromagnetic interactions.
Gravitational quantum states of positronium as a tool to measure gravitational fall of positronium with minimum systematical effects [P. Crivelli et al, Can we observe the gravitational quantum states of positronium? Advances in High Energy Physics (2015) in press]. Advantages: localization in space allows reduction of systematic effects

Fig. 1 A scheme of principle of the proposed shaping device: an H atom is released from the Paul trap (central spot) and it bounces a few times on the mirror surface of the bottom disk (arrows); if it scatters on the rough top surface, it annihilates (lightnings); otherwise, it escapes from the aperture between the two disks, and it falls to the detection plate where it annihilates (lightning on the detection plate). R is the radius of the bottom and top disks, r is the radius of central openings in the disks, h is the distance between the top surface of the bottom disk and the bottom surface of the top disk, H is the distance between the top of the detection plate and the top of the bottom disk, L is the horizontal distance between the initial spot and the detection point.
Whispering-gallery quantum states of cold neutrons as a sensitive and universal method to explore surfaces (including the standard surface potentials and fundamental short-range forces). Examples: in-situ monitoring of the growth of thin films, surface diffusion etc.

Advantages: long observation time thus huge increase in sensitivity; a possibility to use standard reflectometers for cold neutrons available in all neutron centers in the world.
Various realizations

Other options being discussed but not yet developed and formalized:
- Astrophysical realizations of quantum bouncing,
- Nanoparticles and nanodroplets in the vicinity of surfaces,
- Polarized He^3.
Fundamental short-range forces and neutrons

Short-range forces

Phenomenologically:
- Spin-independent,
- Spin-dependent.

Origin:
- Extra light bosons,
- Extra spatial dimensions,
- Dark matter (chameleons),
- Axion-like particles etc

Neutrons
- Electric neutrality,
- Availability of high fluxes of neutrons with wavelengths comparable to the spatial scale of extra interactions to probe,
- High probability of elastic interaction with matter.
All measurements with neutrons related to the topic of my talk are performed at the Institut Max von Laue - Paul Langevin (ILL), Grenoble, France. All measurements involve ILL scientists and also all measurements use ILL facilities.

Short-range forces. State of the art (previous Rencontres de Moriond).

Particle-matter

Axion window of distances
Short-range forces. Recent improvements

Measurements using UCNs in the EDM apparatus at PSI (Villigen, Switzerland) [S. Afach et al, Phys. Let. B (2015) in press]. Red line (H) shows the new constrain derived from this experiment. Solid line (I) indicates an achievable constraint that could be obtained with a modified installation.

Slightly better (then H) constraint was recently measured with polarized 3He (A.K. Petukhov, G. Pignol et al).

Figure 2: Overview of current limits on the product of scalar and pseudoscalar coupling constants $g S g P$ as function of the interaction range λ of a short range spin-dependent force at 95% confidence level. On the top, the corresponding mass range of the mediating particle, i.e. axion or axion-like particle, is shown. The shaded region is excluded by different experiments. Solid line limits were obtained using cold or ultracold neutrons. Dashed line limits were obtained using 3He, 125Xe, or 131Xe precession experiments. A [24]; B [25], assuming an attractive interaction; C [26]; D [6]; E [23]; F [20]; G [21]; and H (red) this work. The line I (dotted) depicts the achievable limit by a simple modification of our apparatus (see text).
Short-range forces. Recent improvements

Neutron gravitational states.
- Several independent groups (Tokyo, QBounce, GRANIT);
- Many new good results in the flow-through mode !! (Qbounce, Tokyo);
- Building a dedicated facility at ILL for experiments with gravitational quantum states of neutrons in the long-storage mode (GRANIT);
- Neutron results for short-range forces are not yet competitive to results of short-range gravity and Casimir experiments but they are rapidly improving (remember that one should improve by 5-6 orders of magnitude; however, no major systematic effects associated with neutrons have been identifies);
- Significant worldwide effort to increase available densities of UCNs.
Short-range forces. Recent improvements

Neutron gravitational states.
- Several independent groups (Tokyo, QBounce, GRANIT);
- Many new good results in the flow-through mode !! (Qbounce, Tokyo);
- Building a dedicated facility at ILL for experiments with gravitational quantum states of neutrons in the long-storage mode.

My fault. There are potentially significant systematic effects, particularly in the flow-through mode, but they could be suppressed by properly designing experiments and by making proper analysis of systematic effects by 5-6 orders of magnitude; however, no major systematic effects associated with neutrons have been identified);
- Significant worldwide effort to increase available densities of UCNs.
Transitions between gravitational quantum states

Flow-through mode; limited observation time

Transitions could be excited, for instance:
- By periodically varying magnetic field gradient;
- By periodically varying local gravitational field;
- By oscillating mechanically the mirror.

Probability of transition

\[E_i - E_j = \hbar \cdot w_{ij} \]

\[v_{21} \approx 256 \text{Hz} \]

\[\delta E_{\text{min}} \approx 10^{-18} \text{eV} \]

\[\frac{\delta E_{\text{min}}}{E_2 - E_1} \approx 10^{-6} \]

Perturbation frequency, Hz

Storage mode: ultimate observation time and energy resolution
Gravitational quantum states in a storage mode

Graph showing interaction strength as a function of interaction length and mass.
Neutron scattering on noble gases (Xe); the method approaching record sensitivity and having good chances of further success (the talk of Yoshio Kamiya at GRANIT-2014 Workshop).
Short-range forces. Recent improvements

Better precision and reliability for experiments with neutron whispering gallery; record sensitivity; good chances for major improvements
Short-range forces. Recent improvements

Neutrons tunneling through the mirror

Experiment

Theory

Neutrons passing to the exit of the mirror
Better precision and reliability for experiments with neutron whispering gallery; record sensitivity; good chances for major improvements.
Conclusions

- The method of gravitational quantum states is rapidly gaining attention and support - good sign! It means that the method is powerful, and “easy” for implementation.

- Neutron, and neutron-related, constraints for fundamental short-range forces are steadily improving due to the efforts of different groups using different methods.

- All these activities are efficient in terms of results/resources.

- These tendencies will stay for the observable future.