Hulluilla on Halvat Huvit

Federico Urban

Université Libre de Bruxelles

50th Moriond Meeting – Gravitation
March 2015
Disformal vectors and anisotropies on a warped brane. Hulluilla on Halvat Huvit

Tomi S. Koivistoa and Federico R. Urbanb

aNordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, Stockholm, SE-10691 Sweden
bService de Physique Théorique, Université Libre de Bruxelles, CP225, Boulevard du Triomphe, Brussels, B-1050 Belgium

E-mail: tomik@astro.uio.no, furban@ulb.ac.be
Disformal vectors and anisotropies on a warped brane
Hulluilla on Halvat Huvit

Tomi S. Koivistoa and Federico R. Urbanb

aNordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, Stockholm, SE-10691 Sweden
bService de Physique Théorique, Université Libre de Bruxelles, CP225, Boulevard du Triomphe, Brussels, B-1050 Belgium

E-mail: tomik@astro.uio.no, furban@ulb.ac.be
Disformal what?
The disformal metric

\[g_{\mu\nu} = C(\phi) g_{\mu\nu} + D(\phi) \phi,\mu \phi,\nu. \]

This is the most general physically consistent relation with these ingredients.

The disformal metric

Have a scalar: $\phi(x)$.
The disformal metric

Have a scalar: $\phi(x)$. And a metric: $g_{\mu\nu}(x)$.

This is the most general physically consistent relation with these ingredients.

The disformal metric

Have a scalar: $\phi(x)$. And a metric: $g_{\mu\nu}(x)$. Want another: $g_{\mu\nu}(g, \phi)$.

This is the most general physically consistent relation with these ingredients.

The disformal metric

Have a scalar: $\phi(x)$. And a metric: $g_{\mu\nu}(x)$. Want another: $g_{\mu\nu}(g, \phi)$.

What would you do?

This is the most general physically consistent relation with these ingredients

The disformal metric

Have a scalar: $\phi(x)$.

And a metric: $g_{\mu\nu}(x)$.

Want another: $g_{\mu\nu}(g, \phi)$.

What would you do?
The disformal metric

Have a scalar: \(\phi(x) \).

And a metric: \(g_{\mu\nu}(x) \).

Want another: \(g_{\mu\nu}(g, \phi) \).

What would you do?

\[
C(\phi) \, g_{\mu\nu}
\]
The disformal metric

Have a scalar: $\phi(x)$. And a metric: $g_{\mu\nu}(x)$. Want another: $g_{\mu\nu}(g, \phi)$.

What would you do?

$$C(\phi) g_{\mu\nu} + \phi,_{\mu} \phi,_{\nu}$$
The disformal metric

Have a scalar: $\phi(x)$. And a metric: $g_{\mu\nu}(x)$. Want another: $g_{\mu\nu}(g, \phi)$.

What would you do?

$$ C(\phi) g_{\mu\nu} + D(\phi) \phi_{,\mu} \phi_{,\nu} $$

The disformal metric

Have a scalar: $\phi(x)$. And a metric: $g_{\mu\nu}(x)$. Want another: $g_{\mu\nu}(g, \phi)$.

What would you do?

$$g_{\mu\nu} = C(\phi) g_{\mu\nu} + D(\phi) \phi,_{\mu} \phi,_{\nu}$$
The disformal metric

Have a scalar: $\phi(x)$. And a metric: $g_{\mu\nu}(x)$. Want another: $g_{\mu\nu}(g, \phi)$.

What would you do?

$$g_{\mu\nu} = C(\phi) g_{\mu\nu} + D(\phi) \phi,_{\mu} \phi,_{\nu}$$

This is the most general physically consistent relation with these ingredients

How to lose your audience 101

D-branes and disformal metrics

• Take a 10D spacetime compactified into a 6D Calabi-Yau and 4D noncompact space
• The geometry is warped due to the internal 6D fluxes
• Now throw in a “probe” D3-brane: it will wander about in search of the bottom of the valley
• The induced metric on the D3 is: $g_{\mu\nu} = h(\phi)^{-1/2}g_{\mu\nu} + h(\phi)^{1/2}\phi_{,\mu}\phi_{,\nu}$

h is the warp factor, ϕ is the compact direction along which the D3 moves

How to lose your audience 101

D-branes and disformal metrics

- Take a 10D spacetime compactified into a 6D Calabi-Yau and 4D noncompact space
How to lose your audience 101

D-branes and disformal metrics

- Take a 10D spacetime compactified into a 6D Calabi-Yau and 4D noncompact space
- The geometry is warped due to the internal 6D fluxes

How to lose your audience 101

D-branes and disformal metrics

- Take a 10D spacetime compactified into a 6D Calabi-Yau and 4D noncompact space
- The geometry is warped due to the internal 6D fluxes
- Now throw in a “probe” D3-brane: it will wander about in search of the bottom of the valley

How to lose your audience 101

D-branes and disformal metrics

• Take a 10D spacetime compactified into a 6D Calabi-Yau and 4D noncompact space
• The geometry is warped due to the internal 6D fluxes
• Now throw in a “probe” D3-brane: it will wander about in search of the bottom of the valley
• The induced metric on the D3 is:

\[g_{\mu\nu} = h(\phi)^{-1/2}g_{\mu\nu} + h(\phi)^{1/2}\phi,\mu\phi,\nu \]

\(h \) is the warp factor, \(\phi \) is the compact direction along which the D3 moves

T. Koivisto, D. Wills and I. Zavala, JCAP 1406, 036 (2014)
Got it?
Good!
Good!

Now,
Good!

Now, forget about it!

😊
The point being...

Look at this Lagrangian:

$$\mathcal{L} = \int d^4x \sqrt{-g} \left[\frac{1}{2} g^{\alpha\beta} R_{\alpha\beta} + p(\phi, X) \right]$$

We need anisotropic metric (Bianchi I)

Want to see some equations?
The point being...

- Look at this Lagrangian:

\[
S_\phi = \int d^4x \sqrt{-g} \left[\frac{1}{2} g^{\alpha\beta} R_{\alpha\beta} + p(\phi, X) \right]
\]
The point being...

- Look at this Lagrangian:

\[S_{\phi} = \int d^4 x \sqrt{-g} \left[\frac{1}{2} g^{\alpha \beta} R_{\alpha \beta} + p(\phi, X) \right] \]

- We need anisotropic metric (Bianchi I)

YOU SAID NO LAGRANGIANS!!!
The point being...

- Look at this Lagrangian:

\[S_A = - \int d^4x \sqrt{-g} \left[\frac{1}{4} g^{\alpha\beta} g^{\gamma\delta} F_{\alpha\gamma} F_{\beta\delta} + \frac{1}{2} m^2 g^{\mu\nu} A_\mu A_\nu \right] \]
The point being...

- Look at this Lagrangian:

\[S_A = - \int d^4x \sqrt{-g} \left[\frac{1}{4} g^{\alpha \beta} g^{\gamma \delta} F_{\alpha \gamma} F_{\beta \delta} + \frac{1}{2} m^2 g^{\mu \nu} A_\mu A_\nu \right] \]

- Everything else instead:

\[S_\phi = \int d^4x \sqrt{-g} \left[\frac{1}{2} g^{\alpha \beta} R_{\alpha \beta} + p(\phi, X) \right] \]
The point being...

- Look at this Lagrangian:

\[S_A = - \int d^4x \sqrt{-g} \left[\frac{1}{4} g^{\alpha\beta} g^{\gamma\delta} F_{\alpha\gamma} F_{\beta\delta} + \frac{1}{2} m^2 g^{\mu\nu} A_{\mu} A_{\nu} \right] \]

- Everything else instead:

\[S_\phi = \int d^4x \sqrt{-g} \left[\frac{1}{2} g^{\alpha\beta} R_{\alpha\beta} + p(\phi, X) \right] \]

- We need anisotropic metric (Bianchi I)
The point being...

- Look at this Lagrangian:

\[
S_A = - \int d^4 x \sqrt{-g} \left[\frac{1}{4} g^{\alpha \beta} g^{\gamma \delta} F_{\alpha \gamma} F_{\beta \delta} + \frac{1}{2} m^2 g^{\mu \nu} A_\mu A_\nu \right]
\]

- Everything else instead:

\[
S_\phi = \int d^4 x \sqrt{-g} \left[\frac{1}{2} g^{\alpha \beta} R_{\alpha \beta} + p(\phi, X) \right]
\]

- We need anisotropic metric (Bianchi I)

Want to see some equations?
Beautification

\[
\ddot{A} + (\dot{\alpha} + 4\dot{\sigma})\dot{A} + \gamma^{-2}M^2A + \gamma^2A\dot{\phi}\left(h\dot{\phi} + \frac{1}{2}h'\dot{\phi}^2\right) = 0
\]

\[
\left(\ddot{\phi} + 3\dot{\alpha}\dot{\phi}\right) \rho, x + \ddot{\phi}^2 \rho, xx + \dot{\phi}^2 \rho, \phi x - \rho, \phi
\]

\[
+ \frac{1}{2} \gamma^3 e^{-2\alpha + 4\sigma} \dot{A}^2 \left[h \left(\gamma^2 \ddot{\phi} - (\dot{\alpha} + 4\dot{\sigma})\dot{\phi}\right) + \frac{1}{2} \gamma^2 h' \dot{\phi}^2\right]
\]

\[
+ \frac{1}{2} \gamma e^{-2\alpha + 4\sigma} A^2 \left[hM^2 \left(\gamma^2 \ddot{\phi} + (\dot{\alpha} + 4\dot{\sigma})\dot{\phi}\right) + \frac{1}{2} \gamma^2 h' M^2 \dot{\phi}^2 + 2MM'\right] = 0
\]

\[
3\ddot{\sigma} + 9\dot{\alpha}\dot{\sigma} - \gamma e^{-2\alpha + 4\sigma} \dot{A}^2 + \gamma^{-1} e^{-2\alpha + 4\sigma} A^2 M^2 = 0
\]

\[
6\ddot{\alpha} + 9\dot{\alpha}^2 + 9\dot{\sigma}^2 + 3\rho + \frac{1}{2} \gamma e^{-2\alpha + 4\sigma} \dot{A}^2 - \frac{1}{2} \gamma^{-1} e^{-2\alpha + 4\sigma} A^2 M^2 = 0
\]

\[
3\ddot{\sigma}^2 - 3\dot{\sigma}^2 - \rho, x\dot{\phi}^2 + p - \frac{1}{2} \gamma^3 e^{-2\alpha + 4\sigma} \dot{A}^2 - \frac{1}{2} \gamma e^{-2\alpha + 4\sigma} A^2 M^2 = 0
\]
\[
\ddot{A} + (\ddot{\alpha} + 4\dot{\sigma}) \dot{A} + \gamma^{-2} M^2 A + \gamma^2 \dot{A} \dot{\phi} \left(h \ddot{\phi} + \frac{1}{2} h' \dot{\phi}^2\right) = 0
\]

\[
\left(\ddot{\phi} + 3\dot{\alpha} \dot{\phi}\right) p,x + \dot{\phi}^2 p,xx + \dot{\phi}^2 p,\phi x - p,\phi
\]

\[
+ \frac{1}{2} \gamma^3 e^{-2\alpha + 4\sigma} \dot{A}^2 \left[h \left(\gamma^2 \ddot{\phi} - (\ddot{\alpha} + 4\dot{\sigma}) \dot{\phi}\right) + \frac{1}{2} \gamma^2 h' \dot{\phi}^2\right]
\]

\[
+ \frac{1}{2} \gamma e^{-2\alpha + 4\sigma} A^2 \left[hM^2 \left(\gamma^2 \ddot{\phi} + (\ddot{\alpha} + 4\dot{\sigma}) \dot{\phi}\right) + \frac{1}{2} \gamma^2 h' M^2 \dot{\phi}^2 + 2M M'\right] = 0
\]

\[
3\ddot{\sigma} + 9\dot{\alpha} \dot{\sigma} - \gamma e^{-2\alpha + 4\sigma} \dot{A}^2 + \gamma^{-1} e^{-2\alpha + 4\sigma} A^2 M^2 = 0
\]

\[
6\ddot{\alpha} + 9\dot{\alpha}^2 + 9\dot{\sigma}^2 + 3p + \frac{1}{2} \gamma e^{-2\alpha + 4\sigma} \dot{A}^2 - \frac{1}{2} \gamma^{-1} e^{-2\alpha + 4\sigma} A^2 M^2 = 0
\]

\[
3\dot{\alpha}^2 - 3\dot{\sigma}^2 - p,\phi \dot{\phi}^2 + p - \frac{1}{2} \gamma^3 e^{-2\alpha + 4\sigma} \dot{A}^2 - \frac{1}{2} \gamma e^{-2\alpha + 4\sigma} A^2 M^2 = 0
\]
Beautification

\[\dddot{A} + (\dot{\alpha} + 4\dot{\sigma})\ddot{A} + \gamma^{-2}M^2A + \gamma^2\dot{A}\dot{\phi}\left(h\ddot{\phi} + \frac{1}{2}h'\dot{\phi}^2\right) = 0 \]

\[2\tilde{\gamma}^2 x,_{\alpha} = 3\dot{\alpha}(1 + 2\tilde{\gamma})(1 - \tilde{\gamma}) \left[\sqrt{\star}\lambda h x^2 - \epsilon x \right] + \Upsilon \]

\[u,_{\alpha} = (2\Sigma - 1) u + \tilde{\gamma} v \]

\[v,_{\alpha} = (\epsilon - 2\Sigma - 2) v - \tilde{\gamma} M^2 u \]

\[\Sigma,_{\alpha} = (\epsilon - 3) \Sigma + 2\tilde{\gamma} v^2 - 2\tilde{\gamma} M^2 u^2 \]

\[M,_{\alpha} = \sqrt{\star}\lambda M M x + \epsilon M \]

\[3\ddot{\sigma} + 9\dot{\sigma} - \gamma e^{-2\alpha+4\sigma} \dot{A}^2 + \gamma^{-1} e^{-2\alpha+4\sigma} A^2 M^2 = 0 \]

\[6\ddot{\alpha} + 9\dot{\alpha}^2 + 9\dot{\sigma}^2 + 3p + \frac{1}{2}\gamma e^{-2\alpha+4\sigma} \dot{A}^2 - \frac{1}{2}\gamma^{-1} e^{-2\alpha+4\sigma} A^2 M^2 = 0 \]

\[3\dot{\alpha}^2 - 3\dot{\sigma}^2 - p,\phi^2 + p - \frac{1}{2}\gamma^3 e^{-2\alpha+4\sigma} \dot{A}^2 - \frac{1}{2}\gamma e^{-2\alpha+4\sigma} A^2 M^2 = 0 \]
Isotropy and vectors

Non-zero vector $\text{vev} \neq \text{anisotropic expansion}$

The shear is zero on average due to the vector oscillations
Semi-stability VS stability

Here we have anisotropic expansion, but this is not asymptotically stable

However, this is a semi-stable, that is, bounded solution (as before).
Summarising

- We studied the most generic vector action coupled to a disformal metric.

1. de Sitter or kinetic isotropic expansion (stable)
2. Anisotropic expansion with zero vector vev (semi-stable)
3. Vector-driven anisotropic stiff solutions (semi-stable)

Most are not cosmologically viable (no acceleration or large anisotropy)

1: vector fields can be compatible with isotropic expansion
2: asymptotic stability is not everything
3: our parametrisation for these systems is awesome!
Summarising

- We studied the most generic vector action coupled to a disformal metric
- We obtained all the fixed points
 1. de Sitter or kinetic isotropic expansion (stable)
 2. Anisotropic expansion with zero vector vev (semi-stable)
 3. Vector-driven anisotropic stiff solutions (semi-stable)
- Most are not cosmologically viable (no acceleration or large anisotropy)
- 1: vector fields can be compatible with isotropic expansion
- 2: asymptotic stability is not everything
- 3: our parametrisation for these systems is awesome!

Summarising

- We studied the most generic vector action coupled to a disformal metric
- We obtained all the fixed points
 1. de Sitter or kinetic isotropic expansion (stable)
 2. Anisotropic expansion with zero vector vev (semi-stable)
 3. Vector-driven anisotropic stiff solutions (semi-stable)
- Most are not cosmologically viable (no acceleration or large anisotropy)
Summarising

- We studied the most generic vector action coupled to a disformal metric.
- We obtained all the fixed points:
 1. de Sitter or kinetic isotropic expansion (stable)
 2. Anisotropic expansion with zero vector vev (semi-stable)
 3. Vector-driven anisotropic stiff solutions (semi-stable)
- Most are not cosmologically viable (no acceleration or large anisotropy).
- 1: vector fields can be compatible with isotropic expansion.

Summarising

- We studied the most generic vector action coupled to a disformal metric
- We obtained all the fixed points
 1. de Sitter or kinetic isotropic expansion (stable)
 2. Anisotropic expansion with zero vector vev (semi-stable)
 3. Vector-driven anisotropic stiff solutions (semi-stable)
- Most are not cosmologically viable (no acceleration or large anisotropy)
- 1: vector fields can be compatible with isotropic expansion
- 2: asymptotic stability is not everything
Summarising

- We studied the most generic vector action coupled to a disformal metric
- We obtained all the fixed points
 1. de Sitter or kinetic isotropic expansion (stable)
 2. Anisotropic expansion with zero vector vev (semi-stable)
 3. Vector-driven anisotropic stiff solutions (semi-stable)
- Most are not cosmologically viable (no acceleration or large anisotropy)
- 1: vector fields can be compatible with isotropic expansion
- 2: asymptotic stability is not everything
- 3: our parametrisation for these systems is awesome!
Summarising

- We studied the most generic vector action coupled to a disformal metric
- We obtained all the fixed points
 1. de Sitter or kinetic isotropic expansion (stable)
 2. Anisotropic expansion with zero vector vev (semi-stable)
 3. Vector-driven anisotropic stiff solutions (semi-stable)
- Most are not cosmologically viable (no acceleration or large anisotropy)
- 1: vector fields can be compatible with isotropic expansion
- 2: asymptotic stability is not everything
- 3: our parametrisation for these systems is awesome!

Thank you!