Thermal Sunyaev-Zel’dovich effect from high redshift \((z > 2)\) structures

Loïc Verdier
CEA Saclay
March 2016
Thermal Sunyaev-Zel’dovich effect from high redshift (z > 2) structures

Table of contents

1. An overview of the hot gas detection at high redshift
2. A significant signal at QSO positions
3. Low-frequency tSZ extraction
4. Evidence for a tSZ signal for $z > 2$ quasars
5. Conclusion
An overview of the hot gas detection at high redshift

Hot gas structures

- $z > 3$
- $3 > z > 2$
- $2 > z > 1$
- $1 > z > 0$

Detection of galaxy clusters/hot gas structures?

Coma cluster

$z = 0.02$
An overview of the hot gas detection at high redshift

Hot gas structures

\[z > 3 \quad 3 > z > 2 \quad 2 > z > 1 \quad 1 > z > 0 \]

Detection: (Thermal) Sunyaev-Zel'dovich effect

CMB photon → Scattered photon

\[\Delta S^\nu (z) \]

Coma cluster

\[z = 0.02 \]
An overview of the hot gas detection at high redshift

Hot gas structures

- $z > 3$
- $3 > z > 2$
- $2 > z > 1$
- $1 > z > 0$

Coma cluster

$z = 0.02$

Catalogues of clusters (Planck, SPT, ACT...)

Loïc Verdier
An overview of the hot gas detection at high redshift

Hot gas structures

- \(z > 3 \)
- \(3 > z > 2 \)
- \(2 > z > 1 \)
- \(1 > z > 0 \)

- Mantz et al. 2014
 - CARMA
 - \(z = 1.9 \)

- Gobat et al. 2011
 - XMM
 - \(z = 2.07 \)

- Coma cluster
 - \(z = 0.02 \)

Catalogues of clusters (Planck, SPT, ACT...)

Loïc Verdier
An overview of the hot gas detection at high redshift

Hot gas structures

- z > 3
- 3 > z > 2
- 2 > z > 1
- 1 > z > 0

Mantz et al. 2014
- CARMA
- z = 1.9

Gobat et al. 2011
- XMM
- z = 2.07

Coma cluster
- z = 0.02

Proto-clusters?

Catalogues of clusters (Planck, SPT, ACT...)

An overview of the hot gas detection at high redshift

Hot gas structures

\[z > 3 \quad 3 > z > 2 \quad 2 > z > 1 \quad 1 > z > 0 \]

Detecting of hot gas structures at high redshift? Millimeter maps + independent tracers.
An overview of the hot gas detection at high redshift

Hot gas structures

- **z > 3**
 - Data: Planck maps
 - *Ruan et al 2015*
 - tSZ at 5σ

- **3 > z > 2**
 - Data: ACT maps
 - *Gralla et al 2014*
 - tSZ at 5σ

- **2 > z > 1**
 - Quasars from SDSS-DR7/DR10 3.5 > z > 0.5
 - Data: ACT + Herschel maps
 - *Crichton et al 2015*
 - tSZ at 3-4σ
 - tSZ at 3.6σ

- **1 > z > 0**
 - Quasars from SDSS-DR7 2.5 > z > 0.1
 - Radio sources from FIRST and NVSS < z > ~1
 - Galaxies from BCS and VHS 1.5 > z > 0.5

Loïc Verdier
Hot gas structures

<table>
<thead>
<tr>
<th>z > 3</th>
<th>3 > z > 2</th>
<th>2 > z > 1</th>
<th>1 > z > 0</th>
</tr>
</thead>
</table>

Our tracers: Quasars from SDSS-DR12 5 > z > 0.1

Our data: Planck maps
(70, 100, 143, 217, 353, 545 and 857 GHz)
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>An overview of the hot gas detection at high redshift</td>
</tr>
<tr>
<td>2</td>
<td>A significant signal at QSO positions</td>
</tr>
<tr>
<td>3</td>
<td>Low-frequency tSZ extraction</td>
</tr>
<tr>
<td>4</td>
<td>Evidence for a tSZ signal for z>2 quasars</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

Loïc Verdier
Thermal Sunyaev-Zel’dovich effect from high redshift (z > 2) structures
First step: what is the nature of the signal at QSO positions?

- Extract a flux at the position of the QSOs with a matched filter.
- To increase the signal-to-noise, work with the **average flux** for a given sample of QSOs.
A significant signal at QSO positions

Formal description of a Planck map

\[m_\nu(\vec{x}) = F_\nu \cdot \tau_\nu(\vec{x} - \vec{x}_0) + n_\nu(\vec{x}) \] with

- \(m_\nu(\vec{x}) \), the Planck map at \(\vec{x} = (RA, DEC) \),
- \(F_\nu \), the flux from the structure (QSO and hot gas),
- \(\vec{x}_0 \) the QSO's position,
- \(\tau_\nu(\vec{x}) \) the spatial profile of the cluster (convolved with the Planck beam) and
- \(n_\nu(\vec{x}) \) the instrumental and astrophysical noise.

\(F_\nu \) + errors extracted with a single-frequency matched filter.
A significant signal at QSO positions

Formal description of a Planck map

\[m_\nu(\vec{x}) = F_\nu \cdot \tau_\nu(\vec{x} - \vec{x}_0) + n_\nu(\vec{x}) \text{ with} \]

- \(m_\nu(\vec{x}) \), the Planck map at \(\vec{x} = (RA, DEC) \),
- \(F_\nu \), the flux from the structure (QSO and hot gas),
- \(\vec{x}_0 \) the QSO’s position,
- \(\tau_\nu(\vec{x}) \) the spatial profile of the cluster (convolved with the Planck beam) and
- \(n_\nu(\vec{x}) \) the instrumental and astrophysical noise.

\(F_\nu \) + errors extracted with a single-frequency matched filter.
A significant signal at QSO positions

Average flux

Average filtered maps centered on QSO positions. Size of the maps: $10^\circ \times 10^\circ$.

![Average filtered map at 70 GHz](image1)

![Average filtered map at 100 GHz](image2)

![Average filtered map at 143 GHz](image3)

![Average filtered map at 217 GHz](image4)

![Average filtered map at 353 GHz](image5)

![Average filtered map at 545 GHz](image6)

![Average filtered map at 857 GHz](image7)
A significant signal at QSO positions
A significant signal at QSO positions

\[\langle \hat{f} \rangle [\text{mJy}] \]

\[\nu [\text{GHz}] \]

\[\approx \]

\[\approx \]

\[\text{SZ}(\nu) \]

\[\text{dust}(T, \beta, \nu) \]
Low-frequency tSZ extraction

Find a signal (1) [DONE]

First step: what is the nature of the signal at QSO positions?

- Extract a flux at the position of the QSOs with a matched filter.
- To increase the signal to noise, work with the **average flux** for a given sample of QSOs.

Find a signal (2)

Second step: assume the tSZ is the dominant signal and extract its amplitude.

- Frequencies kept for the analysis: 100 GHz and 143 GHz (where tSZ is negative and dust emission is weaker).
- Assume $F_\nu = y \cdot SZ(\nu)$
- $Y_{500} = y \cdot E^{-2/3}(z) \cdot \left(\frac{D_A(z)^2}{500\text{Mpc}} \right) = f(M_{\text{gas}})$
Averaging on the whole QSO population

\[\begin{align*}
\tau_{\nu}(\vec{x}) & \quad \rightarrow \quad m_{\nu}(\vec{x}) \\
\Psi & \quad \rightarrow \quad \hat{y} \\
\vec{x}_0 & \quad \rightarrow \quad R_{\nu} \\
\text{Multi-frequency Matched Filter} & \quad \rightarrow \quad \sigma^2(\hat{y}) \\
SZ(\nu) & \quad \rightarrow \quad \chi^2 \\
\hat{Y}_{500} & \quad \rightarrow \quad < \hat{Y}_{500} >
\end{align*} \]

\[R_{\nu} = \hat{F}_{\nu} - \hat{y} \cdot SZ(\nu) \]
Low-frequency tSZ extraction
Higher frequencies required

- No significant tSZ signal detected.
- Need leverage at high frequency for removing dust.
1. An overview of the hot gas detection at high redshift
2. A significant signal at QSO positions
3. Low-frequency tSZ extraction
4. Evidence for a tSZ signal for z>2 quasars
5. Conclusion
Evidence for a tSZ signal for z>2 quasars

Find a signal (1) [DONE]

First step: what is the nature of the signal at QSO positions?
- Extract a flux at the position of the QSOs with a matched filter.
- To increase the signal-to-noise, work with the average flux for a given sample of QSOs.

Find a signal (2) [DONE]

Second step: assume the tSZ is the dominant signal and extract its amplitude.
- Frequencies kept for the analysis: 100 GHz and 143 GHz (where tSZ is negative and dust emission is weaker).
- Assume \(F_\nu = y \cdot SZ(\nu) \)
- \(Y_{500} = y \cdot E^{-2/3}(z) \cdot \left(\frac{D_A(z)^2}{500\text{Mpc}} \right) = f(M_{\text{gas}}) \)

Find a signal (3)

Third step: extract the dominant component of the signal, the dust emission and the sub-dominant tSZ signal.
- Assume \(F_\nu = D \cdot dust(T_{\text{dust}}, \beta, \nu) + y \cdot SZ(\nu) \) with \(dust(T_{\text{dust}}, \beta, \nu) = \nu^\beta \cdot B_\nu(T_{\text{dust}}) \).
- \(M_{\text{dust}} = f(T_{\text{dust}}, \beta, D, z) \) (Beelen et al 2006)
Evidence for a tSZ signal for z>2 quasars

Averaging on the whole QSO population

\[
\begin{align*}
\tau_\nu(\vec{x}) & \Rightarrow \hat{D} & \Rightarrow \hat{M}_{\text{dust}} & \Rightarrow \langle \hat{M}_{\text{dust}} \rangle \\
m_\nu(\vec{x}) & \Rightarrow \hat{y} & \Rightarrow \hat{Y}_{500} & \Rightarrow \langle \hat{Y}_{500} \rangle \\
\vec{x}_0 & \Rightarrow \text{Cov}(\hat{D}, \hat{y}) & \Rightarrow R_\nu & \Rightarrow \chi^2(T_{\text{dust}}, \beta)
\end{align*}
\]

Multi-component Multi-frequency Matched Filter

\[
\begin{align*}
\text{SZ}(\nu) & \Rightarrow \text{dust}(T, \beta, \nu) & \Rightarrow T_{\text{dust}}, \beta & \Rightarrow R_\nu = \hat{F}_\nu - \hat{D} \cdot \text{dust}(T, \beta, \nu) - \hat{y} \cdot \text{SZ}(\nu)
\end{align*}
\]
Evidence for a tSZ signal for z>2 quasars
Evidence for a tSZ signal for z>2 quasars

Averaging on the whole QSO population

Marginalization on T and β

Multi-frequency Matched Filter

$SZ(\nu) \rightarrow dust(T, \beta, \nu)$

T_{dust}, β

$\chi^2(T_{dust}, \beta)$

$\frac{\nu}{x_0}$

$\tau_{\nu}(\bar{x}) \rightarrow M_S$

$\hat{D} \rightarrow \hat{M}_{dust}$

$\langle \hat{M}_{dust} \rangle \rightarrow M_{dust}$

$\langle \hat{Y}_{500} \rangle \rightarrow \bar{Y}_{500}$

$\nu \rightarrow Cov(D, \hat{y})$
Evidence for a tSZ signal for $z>2$ quasars

![Graph showing evidence for a tSZ signal for high redshift quasars]
Evidence for a tSZ signal for z>2 quasars

Interesting sub-population of QSO: \(z \in [2.5, 4] \), no radio counterpart (from FIRST)

- Significant signal from the hot gas: \(Y_{500} = (10.86 \pm 1.46) \times 10^{-6} \text{arcmin}^2 \) (7 \(\sigma \)).
- Cluster mass estimated at \(1.71 \pm 0.13 h^{-1} 10^{13} M_\odot \) (assuming tSZ from virialized clusters and standard redshift evolution). Consistent with the QSO clustering analysis \(1.41 \pm 0.6 h^{-1} 10^{13} M_\odot \) (Richardson et al 2012).
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>An overview of the hot gas detection at high redshift</td>
</tr>
<tr>
<td>2</td>
<td>A significant signal at QSO positions</td>
</tr>
<tr>
<td>3</td>
<td>Low-frequency tSZ extraction</td>
</tr>
<tr>
<td>4</td>
<td>Evidence for a tSZ signal for $z > 2$ quasars</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>
Conclusion

Evidence for hot gas in high redshift structures

- Significant signal at QSO positions in the Planck maps.
- Signal dominated by dust emission.
- Evidence for a sub-dominant tSZ signal using the radio quiet sub-sample between 2.5<z<4.
- No tSZ signal is found if the analysis is restricted to low frequency (ν<217 GHz) maps.
- High frequencies (ν>217GHz) are required to disentangle dust emission from tSZ.
Conclusion

Evidence for hot gas in high redshift structures

- Significant signal at QSO positions in the Planck maps.
- Signal dominated by dust emission.
- Evidence for a sub-dominant tSZ signal using the radio quiet sub-sample between 2.5<z<4.
- No tSZ signal is found if the analysis is restricted to low frequency (ν<217 GHz) maps.
- High frequencies (ν>217GHz) are required to disentangle dust emission from tSZ.

Origin of the tSZ signal difficult to determine

- Hot gas gravitationally heated in potential wells of QSO halos? Or gas from AGN feedback?
- Proper modeling of the AGN required to decide between the two hypotheses.
Conclusion

Evidence for hot gas in high redshift structures
- Significant signal at QSO positions in the Planck maps.
- Signal dominated by dust emission.
- Evidence for a sub-dominant tSZ signal using the radio quiet sub-sample between 2.5<z<4.
- No tSZ signal is found if the analysis is restricted to low frequency (ν<217 GHz) maps.
- High frequencies (ν>217GHz) are required to disentangle dust emission from tSZ.

Origin of the tSZ signal difficult to determine
- Hot gas gravitationally heated in potential wells of QSO halos? Or gas from AGN feedback?
- Proper modeling of the AGN required to decide between the two hypotheses.

Low mass halos contamination
Understanding the mixture of components (tSZ, dust, etc) in low mass halos ($M \sim 10^{13} M_\odot$) may be important to understand the selection function of future millimeter surveys (CMB-S4, COre+, ?).
Thanks for your attention!