Bumpy Inflation: subleading effects in axion inflation

Ivonne Zavala
Swansea university

Rencontres de moriond 2016

Based on
1509.07049 w/kooner & parameswaran
1602.02812 w/parameswaran & Tasinato
COSMOLOGICAL INFLATION

• A period of accelerated quasi dS expansion in the very early universe (solving flatness, horizon and relic problems), driven by a scalar field, whose quantum fluctuations seeded the LSS

[Mukhanov-Chibisov ’81]
[Guth ’81, Linde ’82, Albrecht-Steinhardt ’82]

• Cosmological observables are encoded in the generalised slow-roll parameters \((\dot{H} = \frac{\dot{a}}{a}) \)

\[
\begin{align*}
\epsilon & \equiv 2 \frac{H''^2}{H^2}, \\
\delta & \equiv \frac{H''}{H}, \\
\xi & \equiv \frac{H'''}{H^2}
\end{align*}
\]

\[
\mathcal{P}_\zeta \sim A_s k^{n_s-1}, \quad A_s = \frac{1}{8\pi^2 M_{Pl}^2} \frac{H^2}{\epsilon} = 2.1 \times 10^{-9}
\]

\[
n_s = 1 - 4\epsilon + 4\delta = 0.9667 \pm 0.0066
\]

\[
\alpha_s = -8 \xi + 20 \epsilon \delta - 8 \epsilon^2 \approx -0.013^{+0.010}_{-0.009}
\]

\[
r = 16\epsilon < 0.07
\]

[Planck ’15]
[BICEP2/Keck ’15]
COSMOLOGICAL INFLATION

- A period of accelerated quasi dS expansion in the very early universe (solving flatness, horizon and relic problems), driven by a scalar field, whose quantum fluctuations seeded the LSS

- Cosmological observables are encoded in the generalised slow-roll parameters \(\left(' = \frac{d}{d\phi} \right) \)

\[
\begin{align*}
H &= \frac{\dot{a}}{a} \\
\epsilon &= 2 \frac{H'^2}{H^2}, \quad \delta &= \frac{H''}{H}, \quad \xi &= \frac{H^{'''} H'}{H^2}
\end{align*}
\]

\[
\mathcal{P}_\zeta \sim A_s k^{n_s - 1}, \quad A_s = \frac{1}{8\pi^2 M_{Pl}^2} \frac{H^2}{\epsilon} = 2.1 \times 10^{-9}
\]

\[
n_s = 1 - 4\epsilon + 4\delta = 0.9667 \pm 0.0066
\]

\[
\alpha_s = -8 \xi + 20 \epsilon \delta - 8 \epsilon^2 \approx -0.013^{+0.010}_{-0.009}
\]

\[
r = 16\epsilon < 0.07
\]

[Planck ’15] [BICEP2/Keck ’15]

[Mukhanov-Chibisov ’81] [Guth ’81, Linde ’82, Albrecht-Steinhardt ’82]
Tensor to scalar ratio r is related to

- **The scale of inflation**

 $$V^{1/4} \approx 1.8 \times 10^{16} \text{GeV} \left(\frac{r}{0.1} \right)^{1/4}$$

- **The inflaton field excursion**

 $$\frac{\Delta \phi}{M_{Pl}} \geq \mathcal{O}(1) \left(\frac{r}{0.002} \right)^{1/2}$$

[Lyth, ’96; Boubekeur-Lyth, ’05]
[Garcia-Bellido, Roest, Scalisi, IZ ’14]
INFLATION NEEDS FUNDAMENTAL THEORY

• Inflation is sensitive to Planck scale physics. Higher order corrections to $V(\phi)$

$$\mathcal{O}_{p \geq 6} \rightarrow V(\phi) \left(\frac{\phi}{M_P} \right)^{p-4}$$

generically spoil slow-roll: η-problem

$$\Delta\eta \rightarrow \left(\frac{\phi}{M_P} \right)^{p-6} \gtrsim 1 \quad \left(\eta \equiv M_{Pl}^2 \left| \frac{V''}{V} \right| \ll 1 \right)$$

• (Large field) inflationary models ($\Delta\phi \gtrsim M_{Pl}$) are sensitive to all Planck suppressed interactions unless a symmetry protects the potential
Axion inflation in string theory (at leading order)

Inflaton is an axion (PNGB) with continuous global shift symmetry \(\phi \rightarrow \phi + \alpha \) [Freese-Frieman-Linto, '90] [Croon-Sanz, '14-15]

- **Natural Inflation**, \(V = V_0(1 - \cos(\phi/f)) \). Axions abound in string theory, but to realise \(f \gg M_{Pl} \) is hard \((f \gtrsim 7M_{Pl})\) [Banks, Dine, Fox & Gorbatov, '03] [Kim-Nilles-Peloso, '04; Dimopoulos et al '05; Avgoustidis, IZ, '08, Kenton-Thomas, '14, Kooner, Parameswaran, IZ, '15]

- **Chaotic Inflation (monomial) inflation**

 Axion monodromy

 \(V \sim V_0\phi^n \) \((\Delta \phi \sim 15M_{Pl})\) [Westphal-Silverstein, '08, '14] [Kaloper-Sorbo '08]
Axion inflation in string theory (at leading order)

Inflaton is an axion (PNGB) with continuous global shift symmetry $\phi \rightarrow \phi + \alpha$

- **Natural Inflation**, $V = V_0(1 - \cos(\phi/f))$. Axions abound in string theory, but to realise $f \gg M_{Pl}$ is hard

 ($f \gtrsim 7M_{Pl}$)

- **Chaotic Inflation (monomial) inflation**

 \[V \sim V_0\phi^n \quad (\Delta \phi \sim 15M_{Pl}) \]

Disfavoured by data
String theory models of inflation rely on 4D LEEFT, weakly coupled, perturbative string expansion \((g_s < 1, \quad L/\ell_s > 1)\)

- The string scale in regimes of perturbative control is

\[
M_s = \frac{g_s}{\sqrt{4\pi V_6^w}} \ M_{Pl} \lesssim 10^{17}\text{GeV}
\]

- For a 4D effective field theory description to be valid during inflation, we require the hierarchy:

\[
M_{inf} \lesssim M_{kk} \lesssim M_s \lesssim M_{Pl}
\]

- Otherwise we cannot neglect massive string excitations, Kaluza-Klein modes and extra dimensions
Subleading instanton effects give contributions to effective potential:
\[\sum_n \Lambda_n \cos \left(\frac{n \phi}{f} \right) \]

Effect on inflaton dynamics depends on the size of corrections, their frequency and amplitude.

If corrections dominate \(\Rightarrow \) new minima are introduced. Inflaton trapped in local minimum and slow-roll inflation stops.

[Banks-Dine-Fox-Gorbatov, '03]
Subleading Corrections to Axion Potentials

- Subleading tiny modulations ⇒ inflaton’s background trajectory is hardly affected, but imprints seen in CMB – large, possibly oscillating, running of scalar spectral index.

Corrections are subleading, but significant - this talk

[Westphal-Silverstein-McAllister, ’08; Kobayashi-Takahashi, ’10; Kappl-Nilles-Winkler, ’15; Choi-Kim, ’15]
BUMPY CHAOTIC INFLATION

Axionic chaotic inflation with non-perturbative correction, e.g.

\[V(\phi) = A + \frac{m^2 \phi^2}{2} + \lambda \phi \cos \left(\frac{\phi}{f} \right) \]

smooth monomial chaotic inflation for \(\lambda = A = 0 \),

giving for \(N \sim 60 \), \(\Delta \phi \sim 15 M_{Pl} \), \(r \sim 0.12 \), \(M_{inf} \sim 10^{16} \text{ GeV} \)

[Westphal, Silverstein, '08; Kobayashi, Oikawa, Otsuka, '15; Cabo-Bizet, Loaiza-Brito, IZ, to appear]
BUMPY CHAOTIC INFLATION

Axionic chaotic inflation with non-perturbative correction, e.g.

\[V(\phi) = A + \frac{m^2 \phi^2}{2} + \lambda \phi \cos \left(\frac{\phi}{f} \right) \]

[Westphal, Silverstein, '08; Kobayashi, Oikawa, Otsuka, '15; Cabo-Bizet, Loaiza-Btito, IZ, to appear]
We consider the chaotic inflationary setup with non-perturbative correction:

\[V(\phi) = A + \frac{m^2 \phi^2}{2} + \lambda \phi \cos \left(\frac{\phi}{f} \right) \]

- Consider \(\lambda/f < m^2 \): corrections lead to sharp cliffs and gentle plateaus in potential

\[H^2 = \frac{1}{3M_{Pl}} \left(\frac{1}{2} \dot{\phi}^2 + V(\phi) \right) \]

\[\ddot{\phi} + 3H + V'(\phi) = 0 \]

- Friedmann/KG equations can be solved numerically

\(m \sim 3 \times 10^{-7} M_{Pl}, \quad f = 1/3 M_{Pl}, \quad \lambda \sim (3 \times 10^{-5} M_{Pl})^3 \)
BUMPY CHAOTIC INFLATION

- Slow roll last longer (wrt smooth case for same i.c.)

\[
\dot{\phi}(0) = 5M_{Pl}, \quad \dot{\phi}(0) = 0, \quad a(0) = 1
\]
BUMPY CHAOTIC INFLATION

- Slow roll last longer (wrt smooth case for same i.c.)
- Almost all inflation occurs on the plateaus

FIG. 4: Solution to the Friedmann equations with the bumpy potential (2) with $A/d = 0.35M_{Pl}^4$, $f = 1/3M_{Pl}$ and initial conditions $\dot{a}(0) = 5M_{Pl}$, $\dot{a}(0) = 0$ and $a(0) = 1$.

FIG. 5: Hubble slow-roll parameters with respect to the number of e-folds before the end of inflation, for the bumpy model solution, Fig. 4. Observable today up to the end of inflation), the Hubble slow-roll parameters undergo strong oscillations, when the inflaton rolls down the steep slopes of the bumps. However, during the shorter range of e-folds which can be probed observationally by the CMB, (~ 10 e-folds around $N = 50$), all the slow-roll parameters are small and smoothly varying. This implies that we do not expect consequent features in the power spectrum or non-Gaussian observables (like the ones explored for example in [21, 38]), since they can occur only at scales not probed by current CMB observations.
BUMPY CHAOTIC INFLATION

- Slow roll last longer (wrt smooth case for same i.c.)
- Almost all inflation occurs on the plateaus
- CMB observables at horizon crossing $N \sim 50$
 \[
 n_s = 0.9667, \quad r = 3.1 \times 10^{-5}, \quad \alpha_s = -0.015
 \]
BUMPY CHAOTIC INFLATION

- Slow roll last longer (wrt smooth case for same i.c.)
- Almost all inflation occurs on the plateaus
- CMB observables at horizon crossing $N \sim 50$

 $$n_s = 0.9667, \quad r = 3.1 \times 10^{-5}, \quad \alpha_s = -0.015$$

- Reduced field range (wrt smooth case $\Delta\phi \sim 15 M_{Pl}$)

 $$\Delta\phi \sim 3.2 M_{Pl}$$
BUMPY CHAOTIC INFLATION

- Slow roll last longer (wrt smooth case for same i.c.)
- Almost all inflation occurs on the plateaus
- CMB observables at horizon crossing \(N \sim 50 \)
 \[n_s = 0.9667, \quad r = 3.1 \times 10^{-5}, \quad \alpha_s = -0.015 \]
- Reduced field range (wrt smooth case \(\Delta \phi \sim 15 M_{Pl} \))
 \[\Delta \phi \sim 3.2 M_{Pl} \]
- Reduced inflationary scale (wrt smooth case \(M_{inf} \sim 1.8 \times 10^{16} \text{GeV} \))
 \[M_{inf} \sim 2.4 \times 10^{15} \text{GeV} \]
BUMPY CHAOTIC INFLATION

- Slow roll last longer (wrt smooth case for same i.c.)
- Almost all inflation occurs on the plateaus
- CMB observables at horizon crossing $N \sim 50$
 $$n_s = 0.9667, \quad r = 3.1 \times 10^{-5}, \quad \alpha_s = -0.015$$
- Reduced field range (wrt smooth case $\Delta \phi \sim 15 \, M_{Pl}$)
 $$\Delta \phi \sim 3.2 \, M_{Pl}$$
- Reduced inflationary scale (wrt smooth case $M_{inf} \sim 1.8 \times 10^{16} \text{GeV}$)
 $$M_{inf} \sim 2.4 \times 10^{15} \text{GeV}$$

Possible to embed in string theory; back to favoured region
Natural inflation with subleading non-perturbative corrections

\[V(\phi) = \Lambda^4 \left(1 - \cos \left(\frac{\phi}{f} \right) \right) + \tilde{\Lambda}^4 \left(1 - \cos \left(\frac{\phi}{\tilde{f}} \right) \right) \]

smooth natural inflation for \(\tilde{\Lambda} = 0 \), gives for \(N \sim 60 \)
\[f \gtrsim 6.8 \, M_{Pl}, \quad r \sim 0.1, \quad M_{inf} \sim 10^{16} \, GeV \]

[Banks-Dine-Fox-Gorbatov, '03; Kappl-Nilles-Winkler, '15]
BUMPY NATURAL INFLATION

Natural inflation with subleading non-perturbative corrections

\[V(\phi) = \Lambda^4 \left(1 - \cos \left(\frac{\phi}{f} \right) \right) + \tilde{\Lambda}^4 \left(1 - \cos \left(\frac{\phi}{\tilde{f}} \right) \right) \]

[Banks-Dine-Fox-Gorbatov, '03; Kappl-Nilles-Winkler, '15]
BUMPY NATURAL INFLATION

Natural inflation with subleading non-perturbative corrections

\[V(\phi) = \Lambda^4 \left(1 - \cos \left(\frac{\phi}{f} \right)\right) + \tilde{\Lambda}^4 \left(1 - \cos \left(\frac{\phi}{\tilde{f}} \right)\right) \]

- We consider \(\Lambda = 3 \times 10^{-4} M_{Pl} \), \(f = 1 M_{Pl} \), \(\tilde{\Lambda} = 2 \times 10^{-4} M_{Pl} \), \(\tilde{f} = 1/3 M_{Pl} \)

- Platteau gives sufficient e-folds for single field with \(f = 1 M_{Pl} \)!

\(N_{tot} \sim 136(18) \) for bumpy (smooth)
Distinctive signatures in CMB

- CMB observables at horizon crossing $N \sim 55$

$$n_s = 0.9677, \quad r = 3.5 \times 10^{-7}, \quad \alpha_s = -0.0025$$

- Enough inflation for (sub-Planckian) decay constant $f = 1 M_{Pl}$. Planckian field range

$$\Delta \phi \sim 1 M_{Pl}$$

- Reduced inflationary scale (wrt smooth case)

$$M_{inf} \sim 7.8 \times 10^{14} \text{GeV}$$
Distinctive signatures in CMB

- CMB observables at horizon crossing \(N \sim 55 \)
 \[n_s = 0.9677, \quad r = 3.5 \times 10^{-7}, \quad \alpha_s = -0.0025 \]

- Enough inflation for (sub-Planckian) decay constant \(f = 1 M_{Pl} \). Planckian field range
 \[\Delta \phi \sim 1 M_{Pl} \]

- Reduced inflationary scale (wrt smooth case)
 \[M_{inf} \sim 7.8 \times 10^{14} \text{GeV} \]

Possible to embed in string theory; back to favoured region
CONCLUSIONS

- Non-perturbative corrections can introduce smooth step-like structures to leading order axion potential, whose plateaus give enhanced efolds of inflation.

- Sufficient inflation can be obtained for (sub)-Plackian field ranges & lower inflationary scales: possible to embed in string theory \((M_{inf} < M_s, f \lesssim M_{Pl})\).

- Features in potential give distinctive signatures in CMB (large negative running \(\alpha_s \simeq -10^{-2}, -10^{-3}\)).

- Tensor2Scalar ratio two to four orders of magnitude below future bounds \((r \lesssim 10^{-3})\).

- Can bumpy potentials and parameters emerge from concrete string theory constructions?
CONCLUSIONS

- Non-perturbative corrections can introduce smooth step-like structures to leading order axion potential, whose plateaus give enhanced efolds of inflation.

- Sufficient inflation can be obtained for (sub)-Plackian field ranges & lower inflationary scales: possible to embed in string theory \((M_{inf} < M_s, f \lesssim M_{Pl})\).

- Features in potential give distinctive signatures in CMB (large negative running \(\alpha_s \simeq -10^{-2}, -10^{-3}\)).

- Tensor2Scalar \(r\) two to four orders of magnitude below future bounds \((r \lesssim 10^{-3})\).

- Can bumpy potentials and parameters emerge from concrete string theory constructions? maybe: from complex structure inflation in type IIB.

\[\begin{align*}
\text{Figure 4: IZ: could we show a much higher order case? \text{The 1 and 4th order look almost the same!}}
\end{align*}\]

\[\begin{align*}
\text{For a flux configuration with a Minkowski vacuum with fluxes} \quad F_1 = 20, \\
H_3 = 8, \\
H_4 = 1, \\
\text{we show the scalar potential as a function of } \theta \text{ with the rest of the moduli fixed at their vev's.}
\end{align*}\]