












Figure 7 – CRR from hydrogen and helium for 500-shell calculations. The different curves show individual contributions
(without feedback) as well as the total distortion with and without feedback processes. At low frequencies, free-free absorption
becomes noticeable. The effect is stronger for the contributions from helium due to the larger free-free optical depth before
recombination ends at z � 103. In total, some 6.1γ are emitted per hydrogen atom when all emission and feedback are included.
Hydrogen alone contributes about 5.4γ/NH and helium � 0.7γ/NH (� 8.9γ/NHe). The Figure was taken from43.

3.5 Dark matter annihilation

Today, cold dark matter is a well-established constituent of our Universe2,3,4. However, the nature of dark
matter is still unclear and many groups are trying to gather any new clue to help unravel this big puzzle
138,139,140,141,142,85,143. Similarly, it is unclear how dark matter was produced, however, within ΛCDM,
the WIMP scenario provides one viable solution 144,145. In this case, dark matter should annihilate at a
low level throughout the history of the Universe and even today.

For specific dark matter models, the level of annihilation around the recombination epoch is tightly
constrained with the CMB anisotropies 139,146,147,148,142,149,150,4. The annihilation of dark matter can
cause changes in the ionization history around last scattering (z � 103), which in turn can lead to changes
of the CMB temperature and polarization anisotropies151,152,153,154. Albeit significant dependence on the
interaction of the annihilation products with the primordial plasma 155,148,156,157,158, the same process
should lead to distortions of the CMB 159,133,22. Sadly, it turns out that for the standard WIMP scenario
with s-wave annihilation cross section, the expected signal is even smaller than the adiabatic cooling
distortion24. We will thus not go into more details here.

3.6 Decaying particle scenarios

The CMB spectrum also allows us to place stringent limits on decaying particles in the pre-recombination
epoch 163,164,160,165,159,133,22. This is especially interesting for decaying particles with lifetimes tX �
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Figure 8 – Decaying particle detection limits (1σ) for a PIXIE-like experiment. The eigenamplitudes μi characterize the non-
μ/non-y distortion signal 64, which provides time-dependent information of the energy release history. CMB distortion limits
could be � 50 times tighter than those derived from light element abundances 160,?. A separate determination of lifetime and
particle abundance could be possible for lifetimes tX � 108 sec − 1011 sec, being complementary to constraints derived using
the CMB anisotropies151,152,162. The figure is adapted from64.

108 sec − 1011 sec 24,64, as the exact shape of the distortion encodes when the decay occurred. Decays
associated with significant low-energy photon production could furthermore create a unique spectral sig-
nature that can be distinguished from simple energy release 72. This would provide an unprecedented
probe of early-universe particle physics (e.g., dark matter in excited states166,167), with many natural par-
ticle candidates found in supersymmetric models168,169. This could also shed light on gravitino physics
164,170, axions171 and primordial black holes172,173.

The expected 1σ detection limits for a PIXIE-like experiment are illustrated in Fig. 8. The bounds
obtained from measurements of light-elements 160,161 could be superseded by more than one order of
magnitude. Similar improvements from light-elements are not expected any time soon, and most recent
updated only improved the limits by � 10%174. Spectral distortions thus provide a powerful new probe
of particle physics.

3.7 Anisotropic CMB distortions

To close the discussion of different distortion signals, we briefly mention anisotropic (↔ spectral-spatial)
CMB distortions. Even in the standard ΛCDM cosmology, anisotropies in the spectrum of the CMB are
expected. The largest source of anisotropies is due to the Sunyaev-Zeldovich effect caused by the hot
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plasma inside clusters of galaxies9,175,176,177, as mentioned above. The y-distortion power spectrum has
already been measured directly by Planck10,11 and encodes valuable information about the atmospheres
of clusters 69,178,179,180,181,182,81. Similarly, the warm hot intergalactic medium contributes and should
become visible71,81.

In the primordial Universe, anisotropies in the μ and y distortions are expected to be tiny (relative
perturbations � 10−4, e.g., see 183) unless strong spatial variations in the primordial heating mechanism
are expected 91. As mentioned above, this could in principle be caused by non-Gaussianity of perturba-
tions in the squeezed limit 103,104,105,106,107,108; however, a present detectable levels of non-Gaussianity
are beyond ΛCDM cosmology (see 109 for discussion of some of the foreground issues) and will not be
considered further.

Another guaranteed anisotropic signal is due to Rayleigh scattering of CMB photons in the Lyman-
series resonances of hydrogen around the recombination era 184,185. The signal is strongly frequency
dependent, can be modelled precisely and may be detectable with future CMB imagers (e.g., COrE+)
or possibly PIXIE at large angular scales 185. In a very similar manner, the resonant scattering of CMB
photons by metals appearing in the dark ages186,187,188,189 or scattering in the excited levels of hydrogen
during recombination190,? can lead to anisotropic distortions. To measure these signals, precise channel
intercalibration and foreground rejection is required.

Due to our motion relative to the CMB rest frame, the spectrum of the CMB dipole should also
be distorted simply because the CMB monopole has a distortion 191,192. The signal associated with the
large late-time y-distortion could be detectable with PIXIE at the level of a few σ 192. Since for these
measurements no absolute calibration is required, this effect will allow us to check for systematics. In
addition, the dipole spectrum can be used to constrain monopole foregrounds192,26,193.

Finally, due to the superposition of blackbodies of different temperatures (caused by the spherical
harmonic expansion of the intensity map), the CMB quadrupole spectrum is also distorted, exhibiting a
y-distortion related to our motion 194,195. The associated effective y-parameter is yQ = β2/6 ≈ (2.525 ±
0.012) × 10−7 and should be noticeable with PIXIE and future CMB imagers193.

4 Conclusions

CMB spectral distortion measurements provide a unique way for studying physical processes leading
to energy release or photon injection in the pre- and post-recombination eras. In the future, this could
open a new unexplored window to early-universe and particle physics, delivering independent and com-
plementary pieces of information about the Universe we live in. We highlighted several processes that
should lead to distortions at a level within reach of present-day technology. Different distortion sig-
nals can be computed precisely and efficiently for various scenarios using both analytical and numerical
schemes. Time-dependent information, beyond the standard μ- and y-type parametrization, may allow
us to independently constrain lifetime and abundance of decaying relic particles, learn about the shape
and amplitude of the small-scale power spectrum of primordial perturbations and shed light on dark
matter. The cosmological recombination radiation will allow us to check our understanding of the re-
combination processes at redshifts of z � 103. It furthermore should allow us to distinguish pre- from
post-recombination y-distortions. All this emphasizes the immense potential of CMB spectroscopy, both
in terms of discovery and characterization science, and we should make use of this invaluable source of
information with the next CMB space mission and worldwide ground-based efforts.
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