Signals of Local Duality from a Perturbative QCD Analysis of Inclusive ep Scattering.

Simonetta Liuti

University of Virginia
"... understanding and controlling the accuracy of quark-hadron duality is one of the most important and challenging problems for the QCD practitioners today."

M. Shifman
hep-ph/0009131
\[W^2 \geq 5 \text{ GeV}^2 \]

<table>
<thead>
<tr>
<th>(Q^2) [GeV(^2)</th>
<th>(x_{\text{ Bj}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\leq 0.19)</td>
</tr>
<tr>
<td>2</td>
<td>(\leq 0.33)</td>
</tr>
<tr>
<td>5</td>
<td>(\leq 0.55)</td>
</tr>
<tr>
<td>10</td>
<td>(\leq 0.71)</td>
</tr>
<tr>
<td>20</td>
<td>(\leq 0.83)</td>
</tr>
</tbody>
</table>

\[x = \frac{Q^2}{W^2 - M^2 + Q^2} \]

\[W^2 = Q^2 \left(\frac{1}{x} - 1 \right) + M^2 \]
A Few Facts about Experiment:

Jet studies in pp
A. Korytov and A. Safonov, CDF4996 and hep-ex/0007037

Jet studies in e^+e^-

Semi-inclusive ep
J. Breitweg et al. (ZEUS) EPJ C11 (1999)
S. Chekanov et al. (ZEUS) PL B510 (2001)

Deep Inelastic Scattering at Large x_{Bj}
Jlab data

⇒ All resonance data average to an *average* smooth curve.

⇒ Resolution in W^2: Data for Δ, S_{11}, F_{15}, and higher mass region ($3.1 \leq W^2 \leq 4 \text{ GeV}^2$) average to different smooth curves.

⇒ **PQCD definition of duality:** Data at large Q^2, W^2 are connected to data at lower Q^2, W^2 by pQCD evolution + “small” power corrections.

⇒ Power Corrections can be extracted,

S.L., R. Ent, C. Keppel, I. Niculescu
hep-ph/0111063

⇒ A partonic picture seems to hold down to low Q^2 and even at low W^2.
$W^2 = 1.6 \text{ GeV}^2$

$W^2 = 2.3 \text{ GeV}^2$

\[F_2(x, Q^2) = F_2^{\text{pQCD+TMC}}(x, Q^2) + \frac{H(x, Q^2)}{Q^2} + O\left(\frac{1}{Q^4}\right) \]

\[H(x, Q^2) = F_2^{\text{pQCD+TMC}}(x, Q^2)C_{HT}(x) \]
\[
\frac{F_2^{\text{exp}}}{F_2^{\text{pQCD+TMC}}} = 1 + \frac{C_{HT}(x)}{Q^2} + \Delta H(x, Q^2)
\]
Conclusions I

⇒ We are able to make an assessment based on current data, of the extent to which pQCD works at low momentum transfer and/or low invariant mass.

⇒ Analysis includes:
 • Large x resummation
 • Target Mass Corrections
 • Evaluation of Power Corrections $1/Q^2, 1/Q^4...$

⇒ pQCD-defined Parton-Hadron Duality holds down to $W^2 \approx 2.5$ GeV2

⇒ "Standard" analysis does not describe the data for $W^2 \leq 2.5$ GeV2

⇒ Richer Q^2 dependence at low Q^2 and W^2

⇒ Bloom and Gilman in QCD context:

What causes the observed pattern of scaling and duality violations?
A Model of Structure Functions at Low Q^2

** How do color degrees of freedom evolve during the scattering process? **

Large N_c limit ⇒ **Fragmentation:**

- Each final quark/anti-diquark produced in the parton cascade from $Q^2 \rightarrow Q_o^2$ is connected by a color line — "color connected" — to an antiquark/diquark ⇒ they form a **color singlet cluster** (basis of HERWIG, hep-ph/0011363).

- Pre-confinement property of QCD predicts a cluster mass distribution:

 (1) peaked at low values,
 (2) falling rapidly for large cluster masses,
 (3) independent of the hard process' Q^2.

- Confinement of partons is **local in color** and independent of Q^2.

- **Limiting case:** In e^+e^- hadron fragmentation functions are proportional to parton fragmentation functions with constants $K_\pi, K_p, ...$ independent of Q^2. (Dokshitzer, Khoze and Troyan, Ochs)
Large N_c limit \Rightarrow Deep Inelastic Scattering:

- Convolution of pQCD matrix elements with parton distributions — probability of finding a quark/gluon in the hadron.

- Parton distributions are fitted to data using parametrizations at low Q^2 with little if any physical meaning: physical models can help understanding the transition $pQCD \leftrightarrow npQCD$.

- Backward Evolution: In DIS the color structure of the initial hadron is "disassembled" through the np "forced" emission of a gluon \rightarrow quark anti-quark pair at a scale k^2: $\mu^2 \approx \Lambda^2 < Q_o^2 \equiv k^2 < Q^2$.

- The proton remnant undergoes rescattering.

- Transition: $p \rightarrow$ cluster \rightarrow partons.
DIS
Working Formula

\[F(x, Q^2) = \sum_j e_j^2 \int_{\mu^2}^{Q^2} \frac{dk^2}{k^2} \frac{\alpha_s(k^2)}{2\pi} \times \]
\[\times f_j(x; Q^2, k^2) \int \frac{dx_1}{x_1} \int \frac{dx_2}{x_2} P(x_1, x_2; k^2, \mu^2) \]

\[\Rightarrow \]
Cluster “mass distribution”

\[P(x, k^2, \mu^2) = \int \frac{dx_1}{x_1} \int \frac{dx_2}{x_2} \sum_{j, j_1, j_2} \int_{x_1}^{x-x_2} \frac{dz}{z} \tilde{P}_{j, j_1}(z/x) \]
\[\times \Gamma_{q, j_1} \left(x_1, k^2, \mu^2 \right) \Gamma_{q, j_2} \left(x_2, k^2, \mu^2 \right) \]

\(\Gamma \) evolves as a color connected distribution \(\Rightarrow \) Sudakov type damping at large \(k^2 \).

Amati & Veneziano, Bassetto, Ciafaloni & Marchesini

Parton Evolution

\(f_j \) evolves with DGLAP, \(f_j(y, Q_0^2, Q_0^2) = \delta(1-y) \)
Q^2 dependence of data

$W^2 = 1.6 \, \text{GeV}^2$
Conclusions and Outlook

- We have a model for the low \(Q^2 \) behavior of the structure functions in the whole range of \(x \) that interpolates between the perturbative and np regimes, using the concept of color-singlet clusters in large \(N_c \) limit.

- It explains "duality" observations in inclusive \(ep \) scattering

- Explore connection with low \(x \) low \(Q^2 \) models

- Extension to semi-inclusive processes

- Extension to nuclear structure functions