Moriond 03
QCD + Hadronic Interactions
The Experimental Summary

Peter Mättig
University of Wuppertal
QCD: part of the SM

QCD: prototype of quantum corrections

1979 DESY: gluon discovery

Huge improvements, but levelling off
Directions of QCD experiments

- Fixing the one parameter
- Models for long – distance contributions
 (symmetries, universal parameters,)
- Deviations → 'New Physics' ?

29.3.2003 Peter Mättig, University of Wuppertal
The experimental progress

Higher luminosity

Extended kinematic range

Higher density

New precision detectors

29.3.2003 Peter Mättig, University of Wuppertal
Energy variation $\rightarrow \alpha_s$

3/2 Jet ratios

$\alpha_s = 0.1212 \pm 0.0032 \pm 0.0027$

expt. theo

Eventshapes

$\alpha_s = 0.1198 \pm 0.0009 \pm 0.0047$

expt. theo.

F2 Structurefunction

$\alpha_s = 0.1150 \pm 0.0017 \pm 0.0008$

, $0.1166 \pm 0.0048 \pm 0.0018$

Excellent agreement from completely different analyses!

29.3.2003

Peter Mättig, University of Wuppertal
The error of α_s

Sometimes rather different estimates of theoretical and model uncertainties \rightarrow find a common procedure!

Procedure to estimate theory uncertainty (LEP QCD group)

- Scale uncertainty $x = \mu/Q$: $[0.5, 2]$
- Resummation uncertainties $x_L = [2/3, 3/2]$, alternative matching schemes,
- Maximum deviation

Note: Convention!

29.3.2003 Peter Mättig, University of Wuppertal
estimate of theory uncertainty

Presentations yesterday: NLO outside LO uncertainty band

Crucial for believable QCD tests:

Reliable (! Not minimal) estimate of uncertainty

Follow LEP-QCD group and set up procedure also for other processes
Heavy Quark Production

first order: direct access to partons

- Rather firm theoretical prediction
- Deconvolution of hadronization effects
- Candidate for New Physics
Charm

A. Böhrer

A. Bertolin/J. Butterworth

Di-jet charm production

Good agreement with NLO prediction

29.3.2003

Peter Mättig, University of Wuppertal
Top quark

<table>
<thead>
<tr>
<th>Channel</th>
<th>Xsec(pb)</th>
<th>Stat Err</th>
<th>Syst Err</th>
<th>Lumi</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>all</td>
<td>8.4</td>
<td>(+4.5,-3.7)</td>
<td>(+5.3,-3.5)</td>
</tr>
<tr>
<td>CDF</td>
<td>lep/lep</td>
<td>13.2</td>
<td>5.9</td>
<td>1.5</td>
</tr>
<tr>
<td>CDF</td>
<td>lep + jets</td>
<td>5.3</td>
<td>1.9</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Agreement with theoretical expectations

more precise experimental tests soon!

29.3.2003
Peter Mättig, University of Wuppertal
A beautiful (?) excess?

Known since several years → Motivating SUSY etc. searches

29.3.2003

Peter Mättig, University of Wuppertal
Side remark: $pN \rightarrow B \rightarrow J/\Psi$

HERA-B:
Bottom production in nuclei: C, Ti
Agrees with NLLO calculation
Resolution ... at least for CDF?

Theory: Cacciari and Nason, hep-ph/0204025
Binnweiser et al. PR D58, 034016 (1998)

- Hardness of bottom hadronisation
- Shape of fragmentation function
- Proper inclusion of resummation

Disagreement: factor $2.9 \rightarrow 1.7$

29.3.2003 Peter Mättig, University of Wuppertal
Ambiguities in MC

- INCLUSIVE measurement of $x(B)$, reference from LEP/SLC
- Convolution Parton splitting + B fragm. fct in colour neutral system
- Determine free parameter (e.g. ε_b for Peterson shape)

ε_b depends on many other parameters of model!

Affects shape and hardness at other energies

29.3.2003

Peter Mättig, University of Wuppertal
Normalising B - fragmentation

Cleanest measurement at LEP, SLC

New average (preliminary) 0.715 ± 0.003

E. Ben-Haim

Lund & Bowler favoured
Some general comments

- Improvement from 2.9 → 1.7 great, but still not satisfactory?
- Remarkably little excitement typical for pure QCD deviations ?
- Very slow response of experiments: hardly any reanalysis in light of theoretical concerns

29.3.2003 Peter Mättig, University of Wuppertal
Other News from inside the proton

Strange quark SF
$Q^2 = 4 \text{ GeV}^2$

Transverse spin asymmetry (RHIC)

Electro/photo production of VM

A. Tzanov

B. Surrow

K. Voss, D. Brown

Physics behind it?

pQCD works

29.3.2003

Peter Mättig, University of Wuppertal
Diffraction

P. Van Mechelen

DIS diffraction @ HERA:
- Determination of the diffraction pdfs
- Application to Tevatron data not working!

Failure of Factorisation?

M. Gallinaro

Double diffraction

15 K events – opens up diffractive product of Higgs?

Opens up new Higgs signatures at LHC/Tevatron?
Colour flows

Experimental study based on LPHD

includes particles of very low energy

Very good understanding even to very low momenta!

29.3.2003

Peter Mättig, University of Wuppertal
New tool: colour reconnection

M.Giunta

ARIADNE ruled out
RATHSMAN ruled out
HERWIG ok

Colour reconnection depends on environment?

29.3.2003 Peter Mättig, University of Wuppertal
Hadronization models

Diquark model confirmed

Bose-Einstein at Z^0: π^+/π^0 different?
Kinematic dependence?

Bose Einstein between W's?
DELPHI: 3σ

29.3.2003
Peter Mättig, University of Wuppertal
Glueballs in gluon ladders?

If you have one gluon good chance for a glueball?

~ 100 cand./2500 selected events
- yield similar to known f_2, f_2 (?)
ep not the only possibility

$K^0_sK^0_s$ mass spectra in gluon jets

No confirmation of L3, no signal at ZEUS candidate
Exciting ... but convincing?

Proper background shape?

- Reference K^+K^- shape?

- $f_2 \rightarrow \pi\pi$ yield consistent?

29.3.2003

Peter Mättig, University of Wuppertal
Hadron decays

Models required to include multi-gluon interactions

..... in the absence of lattice calculations

- top quark easy: simple weak interactions (?),
 no top hadrons

- bottom (charm) quark \(\rightarrow\) Effective Heavy Quark Theory, ..

- up, down, strange \(\rightarrow\) mainly chiral pertubation theory

Experiments have reached outstanding precision !!!!!
Light quarks

Testing and constraining Chiral Perturbation Theory

D.Gotta

NA48: high precision K^0_S decay

C.Cheskov

C.Schütz : Pionium

C.Petrasu : Kaonic atoms

.... a long way and lots of theory-experiments interactions!

29.3.2003

Peter Mättig, University of Wuppertal
Charm

Huge charm samples

Tiny branching ratios explorable

Final aim: D^0 mixing, CP violation \(\rightarrow\) Beyond SM

29.3.2003
Peter Mättig, University of Wuppertal
Key issue: CP violation – up to now in beautiful agreement with SM

CKM matrix
A. Warburton, A. Limousani,

Towards B_S mixing
CDF/D0
L. Vacavant

BABAR, BELLE, CLEO:
Long list of 10^{-6} BR decays

QCD uncertainties often limiting factor!

29.3.2003
Peter Mättig, University of Wuppertal
High density nuclear matter

Where to fit in in Q^2 ordering?

Checking signatures of nucleon/quark matter

<table>
<thead>
<tr>
<th>M. Van Leeuwen</th>
<th>H. Santos</th>
<th>G. Usai</th>
<th>H. Sako</th>
</tr>
</thead>
</table>

Saturated K^+/π^+ ratio
J/Ψ suppression
NA60: Pixel detector
Fluctuations

29.3.2003
Peter Mättig, University of Wuppertal
Jets in Heavy Ion Interactions

Are jets observed?
Note: Jets ~ 6-8 GeV!

Comments from a High Energy Physicist:

Near side correlations
(\Delta \eta, \Delta \phi) correlations
Trigger bias?

History: jet evidence in e⁺e⁻ by distinguishing from random particle distribution!

29.3.2003
Peter Mättig, University of Wuppertal
The amazing (?) baryon excess

J. Velkovsa

Central collisions:
$\pi^+/p \sim 1, \quad \pi^-/p^- \sim 1$

Completely in contrast to jets in ee, ep, pp collisions!

B. Hippolyte

Note: does not mean $p \sim p^-$!
Scaling with NN in collision

J. Velkovsa, P. Jacobs

Normalise to p – p combinatorics in peripheral/central collisions

Deviation from scaling for $p_t \sim 3$ GeV ?

29.3.2003

Peter Mättig, University of Wuppertal
No clear picture!

A.Drees, U.Wiedemann, C.Salgado, T.Pierog, W.Busza, S.Panitkin

Jets have been swallowed within nuclei!?

..... but how, what is inside dense matter @ RHIC?

➢ purely hadronic interactions?
➢ signal of gluon/quark interactions?
➢ mixture ????

Complementary measurements required (d Au)
QCD processes to signal BSM?

In general:

Xsection alone difficult, at least without feel for uncertainties!

J.Hays

Uncertainties in pdf’s dilute sensitivity to possible signals

S.Ferrag

Hardly to be taken as signal

29.3.2003 Peter Mättig, University of Wuppertal
Bump hunting

Huge mass span at Tevatron allow search for $X \rightarrow jj$

M. Begel

Jet – Jet Resonances in many models Nothing found yet!

M. Gallinaro, J. Hays

29.3.2003

Peter Mättig, University of Wuppertal
The other part of the SM

Constraints to SM: current main improvements from W, top

A. Straessner

Run I D0: better l+jets mass
Mt = 179.9+-3.6+-6.0 GeV

Run II: restarting top physics

S. Cabrera, R. Zitoun

29.3.2003
Peter Mättig, University of Wuppertal
Extending SM probes

T. Dorigo

Testing the weak and strong top decays

R. Zitoun

Longterm: use for luminosity

29.3.2003
Peter Mättig, University of Wuppertal
Setting the scale ……

Higgs still light!
… though gained some weight!

Standard model Higgs above 114.1 GeV at this stage out of reach

29.3.2003 Peter Mättig, University of Wuppertal
Beyond the Standard Model Higgs

Quizhong Li

$H \rightarrow WW$

H^{++}

Tevatron detectors on guard, more luminosity needed!

29.3.2003

Peter Mättig, University of Wuppertal
BSM: SUSY

S.Braibant-Giacomelli, A.Safanov

No signal observed:
Neither LEP nor Tevatron

Gravity mediated SUSY
MSSM dark matter candidate $M > 46$ GeV

Gauge mediated SUSY:
CDF candidate interpretation excluded

29.3.2003 Peter Mättig, University of Wuppertal
BSM: Non-SUSY

C. Goy, J. Hays

Z' search

Quark-electron compositeness

..... many other models + signatures

29.3.2003

Peter Mättig, University of Wuppertal
Imminent Future

- RHIC coming into gear,
- PEPII, KEKB even more improving,
- Tevatron bound to select several fb⁻¹,
- HERAII, CESR-c starting

Possible highlights of Moriond 2006

29.3.2003 Peter Mättig, University of Wuppertal
The near future: LHC

G. Bruno

Turn-on of LHC: dwarfing all existing data sets: per fb$^{-1}$

$W \to \mu \nu$ 7,000,000

$Z \to \mu \mu$ 1,100,000

$tt \to WbWb \to \mu \nu + X$ 80,000

K. Mazumder

LHC to solve the origin of mass

29.3.2003

Peter Mättig, University of Wuppertal
ECFA, US-HEPAP, ACFA: a linear e^+e^- collider next step

German government recent decision:

- A Free Electron Laser on SC – TESLA components

DESY will continue its research work on TESLA in the existing international framework, to facilitate German participation in a future global project

The next steps: international agreement on technology convince governments of this world – wide facility

29.3.2003

Peter Mättig, University of Wuppertal
THANKS !!!!!!!

Technical help: Etienne Auge, Andreas Kootz

Physics advice:

John Butterworth, Susanna Cabrera, Peter Jacobs, Katharina Klimek, George Lafferty, Gavin Salam, Bernd Surrow and Lynne Orr and many others!

The excellent atmosphere and an exciting conference:

Jean Tran Than Van, Yuri Dokshitzer, Boaz Klima

29.3.2003

Peter Mättig, University of Wuppertal