XXXIXth Rencontres de Moriond La Thuile : 28 march ; 04 april 2004

Studies of the structure of diffraction and of exclusive diffractive final states at HERA

Laurent Schoeffel CEA/Saclay (DAPNIA/SPP)

On behalf of H1 and ZEUS collaborations

- 1. Inclusive diffraction and perturbative QCD
- 2. New measurements at high Q²
- 3. From soft to hard diffraction: VM production
- 4. J/ψ and γ photoproduction at high t
- 5. Deeply Virtual Compton Scattering

Inclusive diffraction

 x_{IP} fractional loss of the proton longitudinal momentum M_X invariant mass of the diffractive final state $\beta = x_{Bj}/x_{IP}$

Diffractive cross section:

$$\frac{d\sigma^{ep \longrightarrow eXY}}{d\beta dQ^2 dx_{IP} dt} = \frac{4\pi\alpha^2}{\beta Q^4} \left(1 - y + \frac{y^2}{2}\right) \sigma_r^{D(4)}$$

with $\sigma_r^D \sim F_2^D$

 $F_2^D =>$ diffractive parton densities

Perturbative QCD and hard diffraction

Good description of F₂^D by QCD fit (based on DGLAP evolution of diffractive pdfs)

Same conclusions for ZEUS measurements :

$$d\sigma^{diff}/dM_X \sim W^{adiff}$$
 with $a^{diff} = 2.(2\alpha_{IP}-2)$

$$M_X$$
 < 2 GeV => soft pomeron M_X > 2 GeV => transition from soft to hard process

 \Rightarrow large Q² + large M_X : perturbative regime

New measurements at high Q²

From soft to hard diffraction and VM production

In VM production, hard scale is given by Q^2 , M_V^2 or t In case of low mass VM => transition from soft to hard (when Q^2 is increasing)

In photoproduction of J/ψ , the hard scale is given by $M_{J/\psi}$

Diffractive J/ψ photoproduction at high t

Cross-sections at high t => qualitatively well described by QCD calculations with an interesting sign of BFKL evolution

 $DGLAP \rightarrow \sim no W dependance$

Diffractive γ photoproduction at high t

Similar conclusions : cross-sections basically described by LL BFKL

Deeply Virtual Compton Scattering

DVCS process : production of real γ .

New measurements in H1 and ZEUS well reproduced by QCD calculations based on Generalized Parton Distributions (GPDs)

Summary

Inclusive diffraction is well described by perturbative QCD at large Q^2 and large M_χ leading to a hard W dependence

Extension of the QCD fit to new high Q² measurements of F₂^{D(3)}

Generic process of diffraction is analysed with interest in VM production with the hard scale given by Q^2 , M_V^2 or t => a hard W dependance is obtained

In addition, diffractive J/ ψ and γ photoproduction at high t give a sign of BFKL evolution (to be studied further).

Finally HERA has measured DVCS cross-section => a hard W behaviour is observed and data are well described by a perturbative model based on GPDs

Studies of the structure of diffraction and of exclusive diffractive final states at HERA H1 and ZEUS collaborations

New measurements of the diffractive structure function at large Q²

=> good agreement with QCD fit

VM production is a well adapted process to study the generic process of diffraction and transition from soft to hard regime. New measurements of diffractive photoproduction of J/ ψ at large t => sign of BFKL evolution?

New measurements of the DVCS cross-section w.r.t. Q² and W. This is a golden process to access to GPDs via asymetries. Already, HERA measurements show a good agreement with a model based on GPDs evolved at NLO

Laurent Schoeffel CEA/Saclay (DAPNIA/SPP)