Gluon and Ghost Propagators in Landau Gauge on the Lattice

Lokhov Alexey

CPHT(Ecole Polytechnique) and LPT (Orsay)

15 March 2005
We study the UV behavior of Gluon and Ghost Propagators in quenched QCD in Landau gauge \((\partial_\mu A^a_\mu = 0) \)
Motivations:

- non-perturbative study in 2GeV → 6GeV domain
- matching between lattice predictions ↔ perturbation theory
- estimation of Λ_{QCD} (the energy scale of quenched QCD, is related to α_s)
- checking the self-consistency of lattice approach

 $$
 \left(\Lambda_{\text{QCD}}^\text{ghost} \leftrightarrow ? \Lambda_{\text{QCD}}^\text{gluon} \right)
 $$

- studying non-perturbative power corrections
Simulation Setup

- Euclidean theory on a finite lattice \((L^4, a)\)
- Monte-Carlo evaluation of the functional integral
 \[
 \int [{\cal D}A] A^a_\mu(x) A^b_\mu(y) e^{-S_{\text{QCD}}[A]}
 \]
 \(\Rightarrow\) gluon propagator.
- Numerical inversion of the Faddeev-Popov operator on the lattice:
 \[
 M^{ab}(x, y) = [(\partial + A) \cdot \partial]^{ab}(x, y)
 \]
 \(\Rightarrow\) ghost propagator.
- Controlled extrapolation to the continuum limit \(a \to 0\)
 \[
 \langle \tilde{A}^a_\mu(p) \tilde{A}^b_\nu(-p) \rangle = \frac{G(p^2)}{p^2} \delta^{ab} \left(\delta_{\mu\nu} - \frac{p_\mu p_\nu}{p^2} \right),
 \]
 \[
 \langle c^a(p) \bar{c}^b(-p) \rangle = \frac{F(p^2)}{p^2} \delta^{ab}
 \]
Results (Gluon)

\[G(p) \text{ vs. } p, \text{ GeV} \]

\[
\begin{array}{cccc}
2 & 4 & 6 & 8 \\
2 & 1 & 1.5 & 2 \\
3 & 3.5 & 3 \text{ MeV} \\
\end{array}
\]

\[\Lambda^2 \approx 297 \pm 3 \text{ MeV} \]

32^4 \beta=6.4 \#conf 250, Fit scheme \text{ MÖM (3)}, \Lambda^2=297\pm 3 \text{ MeV}
Results (Ghost, preliminary)

$F(p) = 32^4 \beta = 6.4 \text{ conf 250, Fit scheme MÖM(3), } \Lambda = 317 \pm 9 \text{ MeV}$
Results (Summary, preliminary)

Fit at 3 loops in MOM scheme + conversion to $\bar{\text{MS}}$ scheme:

<table>
<thead>
<tr>
<th>β</th>
<th>L</th>
<th>$\Lambda_{\bar{\text{MS}}}^{(3)\text{gluon}}$</th>
<th>χ^2/d.d.l</th>
<th>$\Lambda_{\bar{\text{MS}}}^{(3)\text{ghost}}$</th>
<th>χ^2/d.d.l</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>16</td>
<td>319(3)MeV</td>
<td>0.61</td>
<td>333(7)MeV</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>306(4)MeV</td>
<td>0.42</td>
<td>285(3)MeV</td>
<td>0.11</td>
</tr>
<tr>
<td>6.2</td>
<td>24</td>
<td>313(2)MeV</td>
<td>0.60</td>
<td>342(10)MeV</td>
<td>0.6</td>
</tr>
<tr>
<td>6.4</td>
<td>32</td>
<td>297(2)MeV</td>
<td>0.95</td>
<td>317(9)MeV</td>
<td>0.31</td>
</tr>
</tbody>
</table>
Conclusions

- consistent results for Λ_{QCD} at 3 loops for ghost(new) and gluon propagators
- good stable fits at 3 loops in the region $2\text{GeV} \rightarrow 6\text{GeV}$ ($\chi^2 < 1$)
- large value of Λ_{QCD} (quenched approximation) : unquenching and (?)power corrections make it lower, $\sim 250\text{MeV}$
Perspectives

- precise study, including ghost-gluon vertex and corresponding α_s analysis
- (preliminary) taking in account of $\langle A^2 \rangle$ condensate leads to coherent results for Λ from ghost and gluon propagators
- IR study (Gribov copies, IR-asymptotic behavior, etc.)