High Density QCD Physics with Heavy Ions in CMS

Ferenc Siklér for the CMS Collaboration

sikler@rmki.kfki.hu

KFKI Research Institute for Particle and Nuclear Physics
Budapest, Hungary

Moriond QCD, March 23, 2007
Motivation

\[R_{dAu} \]

\[p_T \ (GeV/c) \]

\[\Delta \phi \ (radians) \]

\[\frac{1}{N_{\text{trigger}}} \frac{dN}{d(\Delta \phi)} \]

RHIC \Rightarrow LHC
The Compact Muon Solenoid (CMS) detector

Big acceptance, hermetic coverage
Heavy ion program: study of QCD matter under extreme conditions

"CMS Physics: Technical Design Report v.2
Addendum on High Density QCD with Heavy Ions"

CERN-LHCC-2007-009
Detectors
- Silicon tracker: pixels and strips ($|\eta| < 2.4$)
- Electromagnetic ($|\eta| < 3$) and hadronic ($|\eta| < 5$) calorimeters
- Muon chambers ($|\eta| < 2.4$)
- Extension with forward detectors ($|\eta| < 6.8$)

Can measure leptons (e, μ), hadrons (π, K, p), charged and neutrals (n, γ)
The CMS Heavy Ion physics program

- **Soft physics and global event characterisation**
 - Centrality and event selection
 - Charged particle multiplicity
 - Spectra and correlations
 - Azimuthal asymmetry, flow

- **High p_T probes**
 - High p_T particles and studies of jet fragmentation
 - Modification of fragmentation functions
 - Quarkonia and heavy quarks
 - High energy photons, Z^0, Jet-γ, Jet-Z^0, multijet events

- **Forward physics**
 - Limiting fragmentation
 - Ultra peripheral collisions
 - Exotica

One single detector combines **global** characterization and **specific** probes
Trigger and charged particle multiplicity

- Minimum bias trigger
 - Symmetric number of hits in the forward calorimeters ($3 < |\eta| < 5$)

- Centrality triggers
 - From correlating barrel (ECAL+HCAL) and forward (ZDC) energies

- Charged particle multiplicity
 - Event-by-event, using hits in the innermost pixel layer with $\sim 2\%$ accuracy, systematics below 10%
Low p_T tracking and particle identification

- **Common beliefs so far**
 - CMS cannot track charged particles, if $p_T < 0.75$ GeV/c
 - CMS does not have particle identification

- **CMS is better than previously thought – pixel triplets**
 - Modified pixel triplet generation using geometrical transformations
 - Low fake track rate thanks to geometrical shape of the hit cluster
 - Particle identification using energy loss in silicon, if $p < 1–2$ GeV/c, analogue readout
Low p_T hadron spectra – charged particles

Acceptances and efficiencies at 80–90%, p_T resolution \sim6%
Reduced fake rate: below 10% in central Pb+Pb for $p_T > 0.4$ GeV/c

- **Observables**
 - Identified particle spectra and yields, charged: π^\pm, K^\pm, p, \bar{p}
 - Multiplicity distributions, correlations, scaling

Spectra down to p_T of 0.1–0.3 GeV/c

F. Siklér
Low p_T hadron spectra – first measurements

- Soft physics in minimum bias $p+p$
 - $p+p$ @ 900 GeV and @ 14 TeV
- Heavy ions
 - Pb+Pb @ 5.5 A·TeV
Observables

- Identified particle spectra and yields, neutrals: K^0_S, Λ, $\bar{\Lambda}$, γ
- Multi-strange baryons: Ξ^-, Ω^-
- On-vertex resonances: $\rho(770)$, $K^*(892)$, $\phi(1020)$
- Open charm (D^0, D^{*+}) and open beauty ($B \rightarrow J/\psi + K$)

Access to identified particles
Azimuthal correlations

- Reconstruction of the event plane using calorimetry
- Estimated event plane resolution is about 0.37 rad, if $b = 9$ fm
 v_2 can be measured with $\sim 70\%$ accuracy
- Add tracker information, use forward detectors; reaction plane with ZDC

Viscosity, parton number density
Triggering on hard probes

- Level-1 trigger
 - hardware, muons + calorimeters, decision after $\sim 3\ \mu s$
- High level trigger
 - 10k CPU, full event information, runs offline algorithms

HLT study: parametrising performance of the algorithms
Simulation of various trigger channels, luminosity scenarios
HLT benefits: $50\times$ more J/ψ, $10\times$ more Υ, $2\times$ jet E_T reach

M. Ballintijn, C. Loizides, and G. Roland
• Charmonium and bottomonium resonances
 – Dimuon decay channel, precise tracking
 – Acceptances at 25% (Υ) and 1.2% (J/ψ) with 80% efficiency and 90% purity
 – Mass resolution: 86 MeV/c2 at Υ mass; 35 MeV/c2 at J/ψ mass, full η
 (best mass resolution at LHC)

Thermodynamical state of the medium via melting
Regeneration or suppression?
For 100 GeV jets the resolutions are $\sigma_\eta \approx 2.8\%$, $\sigma_\phi \approx 3.2\%$, $\sigma_{E_T} \approx 16\%$
With high level trigger
- Untriggered dataset and triggered samples
- E_T thresholds of 50, 75 and 100 GeV
- Triggered data sets are merged with a simple scaling procedure

Measure inclusive jet production up to $E_T \approx 0.5$ TeV
High p_T hadrons

- High p_T tracking
 - Algorithmic tracking efficiency of about 75%
 - Few percent fake rate for $p_T > 1$ GeV/c
 - Excellent momentum resolution

Determine nuclear modification factors R_{AA} and R_{CP}

Parton energy loss in the hot and dense medium
High p_T hadrons – triggered

- The p_T reach
 - Spectra and nuclear modification factors
 - Enhanced by using the jet trigger
 - Reach extended from $p_T = 90$ to 300 GeV/c

Precise differential studies of high p_T suppression
Ultraperipheral collisions

- **Diffractive photoproduction of vector mesons**
 - $\rho \rightarrow \pi^+\pi^-$ and $\Upsilon \rightarrow e^+e^-, \mu^+\mu^-$
 - Tagged with forward neutron detection in the ZDCs
 - Combined acceptance and efficiency at 20%
 - Good mass resolution in e^+e^- and in $\mu^+\mu^-$
 - Total yield of 400 Υ, detailed studies of p_T and y dependence

Constrain the gluon density at small x
YB0 (central barrel wheel) arriving in the UXC55 cavern
High density QCD in CMS – summary

Central Pb+Pb 5.5 TeV

125 Hydjet events, |η|<2

π ±
K ±
p ±

Hard sector

Trigger for extended reach

Forward capabilities

Soft physics