Measurement of the Gluon Polarisation in the Nucleon at COMPASS

Presented by Grzegorz Brona
University of Warsaw
on behalf of the COMPASS Collaboration

XLIIInd Rencontres de Moriond
QCD and High Energy Hadronic Interactions, La Thuile, 22.03.2007

Outline:
• COMPASS experiment
• Three methods of $\Delta G/G$ measurement:
 • Open charm
 • High p_T pairs ($Q^2 > 1$ GeV2)
 • High p_T pairs ($Q^2 < 1$ GeV2)
• Outlook and conclusions
Common Muon and Proton Apparatus for Structure and Spectroscopy

The experiment:
- ~250 physicists
- 28 institutes
- programs with muon and hadron beams
- data taking started in 2002
- continued in 2003/4
- break in 2005
- resumed in 2006

Beam parameters:
- momentum: 160 GeV
- luminosity: $\sim 5 \cdot 10^{32}$ cm$^{-2}$s$^{-1}$
- intensity: $2 \cdot 10^8 \mu^+/spill$
- spills: 4.8/16.8 s
- longitudinally polarised
- polarisation: ~76% (~81%)
The production of the beam

- $\pi \rightarrow \mu \nu$ is a parity violating decay
- μ are 100% polarised in a decaying pion rest frame

In the LAB frame:

$$P_\mu = \frac{m_\pi^2 + \left(1 - 2 \frac{E_\pi}{E_\mu}\right)m_\mu^2}{m_\pi^2 - m_\mu^2}$$

The average polarisation is: -0.76 in 2002-3
- 0.81 in 2004

The polarisation: MC and SMC measurements
The target

Target:
- two cells – 60 cm long each
- high luminosity
- material: ^6LiD
- opposite polarisation: ~50%
- exposed to the same beam flux
- dilution factor: 0.4
- polarisation reversal every 8 hours
- cooling system: 50 mK
- acceptance: ±70 mrad
- in 2006 acceptance: ±180 mrad
The spectrometer layout

Two-stage forward-spectrometer:
LAS – 1 Tm magnet (±180 mrad)
SAS – 4.5 Tm magnet (±30 mrad)

PID:
RICH, ECAL, HCAL, muon filters

Track reconstruction for momenta >0.4 GeV
Physics Motivation

Nucleon spin decomposition:

$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_{q,g}$

- contribution from quarks and anti-quarks
- contribution from gluons
- orbital momenta of quarks and gluons

- Only a small fraction of nucleon spin is carried by quarks ~0.3
- Where does the rest of the nucleon spin comes from?
- Gluons helped to solve the missing momentum problem. Will they also be a remedy for the missing spin?

SPIN CRISIS
How to measure ΔG?

In DIS – through the interaction that probes directly gluons inside the nucleon.

Photon Gluon Fussion (PGF): $\gamma^* g \rightarrow \bar{q}q$
What is measured in the experiment

In the experiment we have:

Asymmetry for the interactions measured in the experiment:

\[A_{\text{exp}} = \frac{N_u - N_d}{N_u + N_d} \]

Asymmetry of the cross sections for PGF process:

\[A = \frac{\sigma^{\leftrightarrow} - \sigma^{\leftrightarrow}}{\sigma^{\leftrightarrow} + \sigma^{\leftrightarrow}} \]

The physics and experimental asymmetries:

\[A_{\text{exp}} = P_T P_B f A \]

- \(P_T \) – target polarization (≈50%), ±5%
- \(P_B \) – beam polarization (≈76%, 81%), ±5%
- \(f \) – dilution factor (≈40%), ±5%
Methods of the PGF measurement

Photon Gluon Fussion:

Method I – open charm production (“golden channel”)
- $c\bar{c}$ production
- 1.2 D^0 per $c\bar{c}$-event
- $D^0 \rightarrow K\pi$ (BR \sim4%)
- hard scale set by $4m_c^2$
- no background asymmetry
- only weakly MC dependent
- limited statistics

Method II – 2 high p_T hadrons (Q^2>1 GeV2)
- hard scale set by Q^2
- larger statistics
- resolved photon negligible
- large dilution of other processes
- dependence on MC

Method III – 2 high p_T hadrons (Q^2<1 GeV2)
- hard scale set by p_T^2
- very large statistics
- resolved photon not negligible
- large dilution of other processes
- strong dependence on MC
Open charm production and decay

\[D^0 \rightarrow K\pi \quad (BR \sim 4\%) \]

- Each of the cells 60 cm long
- Enclosed in the solenoid and cooling system
- No vertex detector
- Very high combinatorial background
- RICH identification of kaons essential

- Kaons identification for momenta > 9 GeV
- \(\pi \) is not identified as K

- Cuts on kinematics:
 - \(z(D^0) > 0.25 \) where \(z(D^0) = E_{D^0}/\nu \)
 - \(|\cos\theta_K^*| < 0.5 \)
Open charm signal

\[S_{eff} = \frac{S}{1 + B/S} \]

\[S_{eff} = 1051 \pm 18 \]

\[N(D^0) = 14577 \pm 604 \]

Mass: \[2.9 \pm 1.1 \text{ MeV/c}^2 \]

Sigma: \[26.6 \pm 1.2 \text{ MeV/c}^2 \]

COMPASS preliminary

Still high combinatorial background...
Open charm tagged with D*

~30% D⁰ come from D* decays:

\[D^* \rightarrow D^0 \pi_S \rightarrow K \pi \pi_S \]
Open charm production and decay

\[D^0 \rightarrow K\pi \quad (BR \sim 4\%) \]

\[\sim 30\% \ D^0 \ \text{come from} \ D^* \ \text{decays:} \]

\[D^* \rightarrow D^0 \pi_S \rightarrow K\pi\pi_S \]

From asymmetry to \(\Delta G/G \):

\[A^{YN} = \frac{S}{S+B}a_{LL} \frac{\Delta G}{G} \]

Where \(a_{LL} \) – partonic asymmetry for the \(\gamma^*g \) reaction

(PGF analyzing power)
NN parametrisation

- a_{LL} for each event cannot be calculated directly – only one charmed meson measured per event
- Parametrisation based on the Aroma Monte Carlo is used
- Parametrisation prepared with Neural Networks
- z_{D^0}, $p_{T_{D^0}}$, (x_{bj}, y, Q^2) variables used for parametrisation

Correlation factor 82%
Preliminary results from open charm channel from 2002/3/4 data

$$\Delta G/G = -0.57 \pm 0.41 \text{ (stat.)}$$

$$x_g \approx 0.15 \text{ (RMS 0.08)}$$

scale $\approx 13 \text{ GeV}^2 \approx 4m_c^2$
Systematic error

A number of potential systematic effects studied:

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>δ(ΔG/G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background asymmetry</td>
<td>0.07</td>
</tr>
<tr>
<td>Binning procedure</td>
<td>0.04</td>
</tr>
<tr>
<td>False asymmetries (pulls method)</td>
<td>0.10</td>
</tr>
<tr>
<td>Fitting</td>
<td>0.09</td>
</tr>
<tr>
<td>Parameters of Aroma</td>
<td>0.05</td>
</tr>
<tr>
<td>Target polarisation</td>
<td>0.03</td>
</tr>
<tr>
<td>Beam polarisation</td>
<td>0.03</td>
</tr>
<tr>
<td>Dilution factor</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Combined systematic error is: 0.17

\[\Delta G/G = -0.57 \pm 0.41 \text{ (stat.)} \pm 0.17 \text{ (syst.)} \]
2 hadrons with high p_T ($Q^2 > 1$ GeV2)

Signal

Background

\[A = R_{PGF} a_{LL}^{PGF} \frac{\Delta G}{G} + (R_{QCDC} a_{LL}^{QCDC} + R_{LO} a_{LL}^{LO}) \frac{\Delta q}{q} \]

where R_{PGF}, R_{QCDC}, R_{LO} are the fractions of processes

- $Q^2 > 1$ GeV2 sample – 10% of the whole statistics
- MC needed for R_{PGF} fraction and a_{LL}^{PGF}
- LEPTO 6.5.1 generator is used + GEANT
- $x < 0.05 \rightarrow A_1^d$ - small, LO and QCDC negligible
2 hadrons with high p_T ($Q^2 < 1 \text{ GeV}^2$)

\[A = R_{\text{PGF}} a_{LL}^{\text{PGF}} \frac{\Delta G}{G} \]
\[+ R_{\text{QCDC}} a_{LL}^{\text{QCDC}} \frac{\Delta q}{q} \]
\[+ R_{qq} a_{LL}^{qq} \frac{\Delta q}{q} \left(\frac{\Delta q}{q} \right)_{\gamma} \]
\[+ R_{qq} a_{LL}^{gq} \frac{\Delta G}{G} \left(\frac{\Delta G}{G} \right)_{\gamma} \]
\[+ R_{gg} a_{LL}^{gg} \frac{\Delta G}{G} \left(\frac{\Delta G}{G} \right)_{\gamma} \]

Fractions of each process obtained from PYTHIA 6.2 Monte Carlo.
Preliminary results from 2 hadrons with high p_T ($Q^2>1$ GeV2) channel for 2002/3 data

- $p_{T1}, p_{T2} > 0.7$ GeV
- $p_{T1}^2 + p_{T2}^2 > 2.5$ GeV2

For $Q^2>1$ GeV2

$$\Delta G/G = 0.06 \pm 0.31 \text{ (stat.)} \pm 0.06 \text{ (syst.)}$$

$$R_{\text{PGF}} = 0.34 \pm 0.07$$

$$x_g = 0.13 \text{ (RMS 0.08)}$$

scale: 3 GeV2

For $Q^2<1$ GeV2

$$\Delta G/G = 0.016 \pm 0.058 \text{ (stat.)} \pm 0.055 \text{ (syst.)}$$

$$R_{\text{PGF}} = 0.30$$

$$x_g = 0.095^{+0.08}_{-0.04}$$

scale: 3 GeV2
Results from COMPASS

Lines obtained from NLO QCD fits including a new COMPASS deuteron results on g_1^d (hep-ex/0701014 and PLB 647 (2007)). Two equally good solutions for $\Delta G/G$ were found. For both $|\Delta G| = 0.2 - 0.3$.
Summary

- Results of $\Delta G/G$ measurements were presented.
- 3 channels were studied:
 - Open charm (2002-4): $\Delta G/G = -0.57 \pm 0.41 \text{ (stat.)} \pm 0.17 \text{ (syst.)}$
 - High p_T ($Q^2>1$) (2002-3): $\Delta G/G = 0.06 \pm 0.31 \text{ (stat.)} \pm 0.06 \text{ (syst.)}$
 - High p_T ($Q^2<1$) (2002-4): $\Delta G/G = 0.016 \pm 0.058 \text{ (stat.)} \pm 0.055 \text{ (syst.)}$

- Small ΔG are preferred.
- But still scenarios with large $\Delta G (>0.4)$ not excluded.
- The question of $L_{q,g}$ importance still open.
Prospects

• Results from 2002-4 high p_T ($Q^2>1$) analysis available soon
• 2002-4 open charm analysis still ongoing
• For high p_T analysis binning in x_g considered, NN approach under investigation

• Improvements of COMPASS in 2006:
 • New target solenoid – improvement in hadron acceptance (+30%)
 • Improvements in RICH efficiency
 • New tracking detectors
Spares
• ~350 detector planes
• Track reconstruction for momenta > 0.4 GeV
• Very small angles: SciFi, Silicon Microstrips
• Small angles: Micromega, GEM
• Large angles: Drift Chamber, Straw Tubes, MWPC
The Dynamic Nuclear Polarisation (DNP)

- The target material is kept at a low temperature (0.4 K) + strong magnetic field – very high electron polarisation is achieved.
- Microwave radiation of energy needed for the simultaneous flip of the proton and electron spins.
- This energy depends on the value of the total spin of the electron-proton system.
- After rotation electron relaxates to the lower energy state.
- While proton does not change the spin orientation.
- Separate microwave system for each of the cells.
- In the gap there is a microwave stopper.
- Polarisation is measured by NMR coils
Particles Identification

- >80 m³ filled with C₄F₁₀
- 116 VUV mirrors
- active area: 5.3 m² photodetectors
 82 944 pixels
- >80k channels
- π/K/p identification up to 50 GeV
 from 2.5/9/17 GeV

80% of K from D⁰

For muons identification additionally muon filters and calorimeters are used

HCAL calorimeters

iron – scintillator sandwich
What is measured in the experiment

Taking into account also asymmetry after pol. rotation:

\[A_{\text{exp}} = \frac{1}{2} \left(\frac{N_u - N_d}{N_u + N_d} + \frac{N_d' - N_u'}{N_d' + N_u'} \right) \]

The physical and experimental asymmetries:

\[A_{\text{exp}} = P_T P_B f A \]

- \(P_T \) – target polarization (~50%), ± 5%
- \(P_B \) – beam polarization (~76%, 81%), ± 5%
- \(f \) – dilution factor (~40%), ± 5%
2 hadrons with high p_T ($Q^2>1$ GeV2)

- Cuts used:
 - hadrons detected in the hadronic calorimeters
 - & discarded if detected behind the hadron absorbers
 - current fragmentation region ($x_F>0.1$ & $z>0.1$)
 - $0.1<y<0.9$ (assure that there is no big influence of radiative corrections),
 - $x<0.05 \rightarrow A^d_1$ - small, LO and QCDC negligible
 - $p_{T1}, p_{T2} > 0.7$ GeV
 - $p_{T1}^2 + p_{T2}^2 > 2.5$ GeV2
 - invariant mass $m_{h_1h_2} > 1.5$ GeV (avoid the resonance region)

as in SMC
2 hadrons with high p_T ($Q^2<1$ GeV2)

The fractions of each process obtained from PYTHIA 6.2 Monte Carlo.

+ GEANT for the detector description

The agreement between Real Data (blue points) and Monte Carlo:
2 hadrons with high p_T ($Q^2<1\text{ GeV}^2$)

- The systematical error can be decomposed:
 - False asymmetries (experimental systematics): 0.014
 - Resolved photon contribution: 0.013
 - Monte Carlo tuning: 0.052
 - The MC parameters were changed in a range where the resonable agreement between the data and MC remains
 - 30% difference in $R_{_{PGF}}$ found
Results from COMPASS

\[\int \Delta G \, dx = 2.5 \]
\[\int \Delta G \, dx = 0.62 \]
\[\int \Delta G \, dx = 0.16 \]
Figure 7: Gluon distribution $x\Delta G(x)$ corresponding to the fits with $\Delta G > 0$ (left) and $\Delta G < 0$ (right) obtained with the program of Ref. [27]. The dashed, solid and dotted lines correspond to $Q^2 = 1.5$, 3 and 10 $(\text{GeV}/c)^2$, respectively. The unpolarised distributions $\pm x G(x)$ which were used in the fit as constrains for the polarised ones are shown for $Q^2 = 1.5$ and 3 $(\text{GeV}/c)^2$.
Values used for extraction of $\Delta G/G$
A_1^d WORLD DATA

- COMPASS 2002-03, $Q^2 \geq 1$ GeV2
- COMPASS 2002-03, $Q^2 < 1$ GeV2 (PRELIMINARY)
- E143, $Q^2 \geq 1$ GeV2
- E155, $Q^2 \geq 1$ GeV2
- HERMES, $Q^2 > 1$ GeV2
- SMC, all Q^2

![Graph showing A_1^d as a function of x with error bars for different experiments.](image-url)
Figure 2.11: The gluon momentum distribution extracted from a QCD analysis compared to the result obtained with an open charm tagging approach. The line ("H1 prel") shows $xG(x)$ as extracted via a QCD fit on NMC and H1 data, error bands taking into account theoretical and experimental uncertainties are indicated. The points are obtained from a D^* meson cross-section measurement by the H1 collaboration. For the DIS measurement $Q^2 > 2 \text{(GeV/c)}^2$ was required, whereas for the photoproduction (γp) $Q^2 < 0.01 \text{(GeV/c)}^2$ was used [50].