Small-x Physics
and the detection of
Ultra-High Energy Neutrinos

G. Parente
Universidade de Santiago de Compostela

work done in coll. with N. Armesto, C. Merino and E. Zas

XLIIIrd Rencontres de Moriond
QCD and High Energy Interactions
La Thuile, 8-15 March
Outline

• The search for UHE cosmic neutrinos: ν_τ

• τ energy loss at UHE

• νN DIS CC x-section
Detection of UHE neutrinos

- Neutrino-induced muons or showers in ice/water

 IceCube, Antares, Nestor, Baikal

- Neutrino-induced showers in air shower arrays

 Pierre Auger

 - Down-going neutrinos (inclined showers)

 - Up-going tau-neutrinos (Earth-skimming)
Earth-skimming neutrinos

- ν_τ conversion into τ through D.I.S.
- τ energy loss (mostly photonuclear)
- τ emerges from the ground and decays in fly producing an extensive air shower
Event rate

- tau neutrino flux
- νN x-section (CC DIS)
- τN x-section (photonuclear)
- τ decay probability
- Detector acceptance
τ energy loss

\[-\left\langle \frac{dE}{dX} \right\rangle = a(E) + b(E)E\]

From Aramo et al Astrop. Phys. 23 (2005) 65

(Standard Rock: A=22, Z=11, density=2.65 g/cm3)
\[b(E) = \frac{N_A}{A} \int dy \ y \int dQ^2 \frac{d\sigma^{lA}}{dQ^2 dy} \]

\[Q_{\min}^2 = \frac{y^2 m_l^2}{1-y}, \quad Q_{\max}^2 = 2m_p E y - 2m_\pi m_p - m_\pi^2, \]

\[y_{\min} = \frac{2m_\pi m_p + m_\pi^2}{2m_p E}, \quad y_{\max} = 1 - \frac{m_l}{E}, \]

\[\frac{d\sigma^{lA}}{dQ^2 dy} = \frac{4\pi \alpha^2}{Q^4} \frac{F_2^A}{y} \left[1 - y - \frac{Q^2}{4E^2} + \left(1 - 2\frac{m_l^2}{Q^2} \right) \frac{y^2 + Q^2/E^2}{2(1 + R^A)} \right] \]
Calculations of $b(E)$

- Generalized Vector Dominance (soft) + Color Dipole (hard)
 Bezrukov, Bugaev 1981
 Bugaev, Shlepin 2003

- Regge theory (pomeron + reggeon) + pQCD (hard)
 Dutta et al. 2001 (ALLM)
 Butkevich, Mikheyev 2002 (CKMT)
 Kuzmin et al 2004 (CKMT)
 Petrukhin, Timashkov 2005

- Geometric scaling property found in γ^*p and γ^*N x-section data (saturation)
 Armesto, Merino, Parente, Zas 2008
 (ASW: Armesto, Salgado, Wiedemann 2005)
The τ energy loss from different x and Q^2 regions

$$b(E) [x < x_{\text{cut}}]$$

x range at 10^9 GeV
F_2 proton at low and moderate Q^2

![Graph showing F_2 vs x for different Q^2 values at HERA.]
\(\tau \) energy loss

\[b(E) = -\frac{1}{E} \langle \frac{dE}{dX} \rangle = \frac{N_A}{A} \int dy y \int dQ^2 \frac{d\sigma^{IA}}{dQ^2 dy}, \]

\(\tau \)-lepton, \(A=22 \)

- ALIM
- CKMT
- ASW
- KLS
- BB/BS
- PT

Factors:
- Factor 2
- Factor 4
Nuclear correction factor

\[F_2^A = f^A A F_2^p \]
The effect of nuclear corrections

factor 2
Neutrino-nucleon CC DIS x-section

\[
\frac{d\sigma_{CC}^{\nu N}}{dQ^2 dy} = \frac{G_F^2}{4\pi} \left(\frac{M_W^2}{M_W^2 + Q^2} \right)^2 \frac{F_2^{\nu N}}{y} \left[1 + (1 - y)^2 \right]
\]
\[\log(Q^2) \]

- \(E_v = 10^{11} \text{ GeV} \)
- \(Q^2 = M_W^2 \)
F_2 at high Q^2
The graph shows the cross-section $\sigma_{\nu N}^{cc}$ as a function of the energy E in GeV. The cross-section is given in units of pb (picobarns). The graph includes data from various sources, such as Anchordoqui et al., HERA, KOPA, and ASW. A notable feature is the indication of a factor 2 difference, which is marked on the graph.
Summary

• The establishment of a tau neutrino bound from air shower data is affected by important systematic effects due to the uncertainty in F_2 at low x.

• Several F_2 models have been explored in the low x range. For the neutrino-nucleon interaction at high Q^2 and for the tau interaction at low and moderate Q^2.

• For the tau energy loss at 10^9 GeV the difference between the two extreme predictions reaches a factor 4. For the neutrino cross section it is a factor 2.

• GVD and Regge based (+ hard pQCD component) calculations of the tau energy loss agree within a 30% and go parallel to all energies.

• A much stronger nuclear shadowing at small x lower b(E) by a factor up to 2 but is not expected to affect the neutrino cross section.