Where Feynman, Field and Fox Failed and How we Fixed it at RHIC

M. J. Tannenbaum
Brookhaven National Laboratory
Upton, NY 11973 USA

XLIII Rencontres de Moriond
(recent Super Bowl was XLII)
QCD and High Energy Interactions
La Thuile, Italy, Mar 8-15, 2008
Il y’avait une fois

Many results in p-p collisions that were new and exciting in 1979 are relevant for RHIC 2008
π⁰ production in p-p collisions at RHIC

PHENIX, PRD76(2007)051006(R)

- Hard scattering dominates after ~3 orders of magnitude power-law.
- NLO-pQCD precision agreement
 - Stratmann Vogelsang hep-ph/0702083

No surprise (to me) that NLO pQCD agrees with data.
π^0 invariant cross section in p-p at $\sqrt{s}=200$ GeV is a pure power law for $p_T > 3$ GeV/c, $n=8.10\pm0.05$. Power at 62.4 ISR ($x_T>0.27$ is $n=11.03\pm0.16$)
Au+Au Central Collisions cf. p-p

STAR-Jet event in pp

STAR Au+Au central

PHENIX Au+Au central

High p_T particle

p+p

High p_T particle

Au+Au

PHENIX E_T Transverse Energy corr to $\Delta\eta=1$ and $\Delta\Phi=2\pi$

0.5% 4%
Latest π^0 Au+Au arXiv:0801.4020

Power Law $p_T > 3\text{GeV/c}$ all centralities $n = 8.10 \pm 0.05$

Table 5: Fit parameters for $p_T > 3\text{GeV/c}$

<table>
<thead>
<tr>
<th>System</th>
<th>A</th>
<th>n</th>
<th>χ^2/NDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>p+p</td>
<td>14.61±1.45</td>
<td>8.12±0.05</td>
<td>5.68/17</td>
</tr>
<tr>
<td>Au+Au 0-5%</td>
<td>81.18±10.30</td>
<td>8.20±0.07</td>
<td>9.66/16</td>
</tr>
<tr>
<td>Au+Au 0-10%</td>
<td>75.28±8.89</td>
<td>8.18±0.06</td>
<td>10.62/17</td>
</tr>
<tr>
<td>Au+Au 10-20%</td>
<td>64.62±7.64</td>
<td>8.19±0.06</td>
<td>10.04/17</td>
</tr>
<tr>
<td>Au+Au 20-30%</td>
<td>49.33±5.78</td>
<td>8.18±0.06</td>
<td>6.63/16</td>
</tr>
<tr>
<td>Au+Au 30-40%</td>
<td>30.85±3.53</td>
<td>8.10±0.06</td>
<td>10.63/16</td>
</tr>
<tr>
<td>Au+Au 40-50%</td>
<td>22.58±2.61</td>
<td>8.13±0.06</td>
<td>3.50/15</td>
</tr>
<tr>
<td>Au+Au 50-60%</td>
<td>12.40±1.48</td>
<td>8.06±0.07</td>
<td>8.09/15</td>
</tr>
<tr>
<td>Au+Au 60-70%</td>
<td>6.25±0.78</td>
<td>8.03±0.07</td>
<td>2.89/14</td>
</tr>
<tr>
<td>Au+Au 70-80%</td>
<td>3.38±0.45</td>
<td>8.12±0.08</td>
<td>8.42/13</td>
</tr>
<tr>
<td>Au+Au 80-92%</td>
<td>1.19±0.18</td>
<td>8.03±0.09</td>
<td>9.84/13</td>
</tr>
<tr>
<td>Au+Au 0-92%</td>
<td>29.31±3.07</td>
<td>8.17±0.05</td>
<td>6.83/17</td>
</tr>
</tbody>
</table>
Suppression of π^0 is arguably the major discovery at RHIC. Energy loss in medium?

Original π^0 discovery, PHENIX PRL 88 (2002)022301

\[
R_{AA}(p_T) = \frac{d^2N_{AA}^\pi}{dp_T dy N_{AA}^{inel}} / \left(\frac{T_{AA}}{T_{pp}}\right) \frac{d^2\sigma_{pp}^\pi}{dp_T dy}
\]
Direct γ are not suppressed. π^0 and η suppressed even at high p_T.
Implies a strong medium effect (energy loss) since γ not affected.
Suppression is flat at high p_T. Are data flatter than theory?
Direct γ are not suppressed. π^0 and η suppressed even at high p_T.
Implies a strong medium effect (energy loss) since γ not affected.
Suppression is flat at high p_T. Are data flatter than theory?
Trigger on a particle e.g. π^0 with transverse momentum $p_{T\pi}$. Measure azimuthal angular distribution w.r.t the trigger azimuth of associated (charged) particles with transverse momentum p_{Ta}. The strong same and away side peaks in p-p collisions indicate di-jet origin from hard-scattering of partons. For the away distribution calculate the conditional yield in the peak as a function of $x_E \sim p_{Ta}/p_{T\pi}$.
\[z = \frac{p_T}{\hat{p}_T} \] is the jet fragmentation variable: \(z_t \) and \(z_a \)

\[D^q_\pi(z) = Be^{-bz} \] is a typical Fragmentation Function, \(b \approx 8-11 \) at RHIC

Due to the steeply falling spectrum, the trigger \(\pi^0 \) are biased towards large \(z_t \), \(\langle z_t \rangle \approx (n-1)/b \) while unbiased \(\langle z \rangle \approx 1/b \)

\[x_E = \left| \frac{\vec{p}_{Ta} \cdot \vec{p}_{Tt}}{p_{Tt}^2} \right| = \frac{-p_{Ta} \cos \Delta \phi}{p_{Tt}} \approx \frac{p_{Ta}}{p_{Tt}} = \frac{p_{Ta}/\hat{p}_{Tt}}{p_{Tt}/\hat{p}_{Tt}} \approx \frac{z_a}{\langle z_t \rangle} \]

From Feynman, Field and Fox: the \(x_E \) distribution corrected for \(\langle z_t \rangle \) measures the unbiased fragmentation function

\[\frac{dP_{\text{FFF}}}{dx_E} \approx \langle z_t \rangle B \exp -b \langle z_t \rangle x_E \]
Kinematics-Figure is from Moriond 1979

\[z = \frac{p_T}{\hat{p}_T} \] is the jet fragmentation variable: \(z_t \) and \(z_a \)

\[D^q_\pi(z) = Be^{-bz} \] is a typical Fragmentation Function, \(b \approx 8-11 \) at RHIC

Due to the steeply falling spectrum, the trigger \(\pi^0 \) are biased towards large \(z_t \), \(\langle z_t \rangle \approx (n - 1)/b \) while unbiased \(\langle z \rangle \approx 1/b \)

\[x_E = \left| \frac{\vec{p}_{Ta} \cdot \vec{p}_{Tt}}{p_{Tt}^2} \right| \approx \frac{p_{Tt} \cos \Delta \phi}{p_{Tt}} \approx \frac{p_{Ta}}{p_{Tt}} = \frac{p_{Ta}}{p_{Tt}} / \hat{p}_{Tt} \approx \frac{z_a}{\langle z_t \rangle} \]

From Feynman, Field and Fox: the \(x_E \) distribution corrected for \(\langle z_t \rangle \) measures the unbiased fragmentation function

\[\frac{dP^{FFF}}{dx_E} \approx \langle z_t \rangle B \exp(-b \langle z_t \rangle x_E) \]
\[z = \frac{p_T}{\hat{p}_T} \] is the jet fragmentation variable: \(z_t \) and \(z_a \)

\[D_q^\pi(z) = Be^{-bz} \] is a typical Fragmentation Function, \(b \approx 8-11 \) at RHIC

Due to the steeply falling spectrum, the trigger \(\pi^0 \) are biased towards large \(z_t \), \(\langle z_t \rangle \approx (n - 1)/b \) while unbiased \(\langle z \rangle \approx 1/b \)

\[x_E = \left| \frac{\vec{p}_{Ta} \cdot \vec{p}_{Tt}}{p_{Tt}^2} \right| = \frac{-p_{Ta} \cos \Delta \phi}{p_{Tt}} \approx \frac{p_{Ta}}{p_{Tt}} = \frac{p_{Ta}/\hat{p}_{Tt}}{p_{Tt}/\hat{p}_{Tt}} \approx \frac{z_a}{\langle z_t \rangle} \]

From Feynman, Field and Fox: the \(x_E \) distribution corrected for \(\langle z_t \rangle \) measures the unbiased fragmentation function

\[\frac{dP_{\text{FFF}}}{dx_E} \approx \langle z_t \rangle B \exp \left(-b \langle z_t \rangle x_E \right) \]
Kinematics-Figure is from Moriond 1979

\[z = \frac{p_T}{\hat{p}_T} \]

is the jet fragmentation variable: \(z_t \) and \(z_a \)

\[D^q_\pi(z) = B e^{-bz} \]

is a typical Fragmentation Function, \(b \sim 8-11 \) at RHIC

Due to the steeply falling spectrum, the trigger \(\pi^0 \) are biased towards large \(z_t \), \(\langle z_t \rangle \approx (n-1)/b \) while unbiased \(\langle z \rangle \approx 1/b \)

\[x_E = \left| \frac{\vec{p}_{Ta} \cdot \vec{p}_{Tt}}{p_{Tt}^2} \right| = \frac{-p_{Ta} \cos \Delta \phi}{p_{Tt}} \approx \frac{p_{Ta}}{p_{Tt}} = \frac{p_{Ta}/\hat{p}_{Tt}}{p_{Tt}/\hat{p}_{Tt}} \approx \frac{z_a}{\langle z_t \rangle} \]

From Feynman, Field and Fox: the \(x_E \) distribution corrected for \(\langle z_t \rangle \) measures the unbiased fragmentation function

\[\frac{dP_{FFF}}{dx_E} \approx \langle z_t \rangle B \exp -b \langle z_t \rangle x_E \]
There is a simple relationship between experiments done with single-particle triggers and those performed with jet triggers. The only difference in the opposite side correlation is due to the fact that the ‘quark’, from which a single-particle trigger came, always has a higher p_\perp than the trigger (by factor $1/z_{\text{trig}}$). The away-side correlations for a single-particle trigger at p_\perp should be roughly the same as the away side correlations for a jet trigger at $p_\perp (\text{jet}) = p_\perp (\text{single particle})/ <z_{\text{trig}}>$.
PHENIX-compared measured x_E distribution in p-p to numerical integral using LEP fragmentation functions

PHENIX PRD 74 (2006) 072002. The x_E distribution triggered by a leading fragment (π^0) is not sensitive to the shape of the fragmentation function!!! Disagrees with FFF!!
A very interesting new formula for the x_E distribution was derived by PHENIX in PRD74.

$$\frac{dP_\pi}{dx_E}_{pT_t} \approx \langle m \rangle (n - 1) \frac{1}{\hat{x}_h (1 + \frac{x_E}{\hat{x}_h})^n}$$

If formula works, we can also use it in Au+Au to determine the relative energy loss of the away jet to the trigger jet (surface biased by large n).

Relates ratio of particle p_T

$$x_E = \frac{-p_{T_a} \cos \Delta \phi}{p_{T_t}} \approx \frac{p_{T_a}}{p_{T_t}}$$

Ratio of jet transverse momenta

$$\hat{x}_h = \frac{\hat{p}_{T_a}}{\hat{p}_{T_t}}$$

Can be determined

If formula works, we can also use it in Au+Au to determine the relative energy loss of the away jet to the trigger jet (surface biased by large n).
Exponential Frag. Fn. and power law crucial

\[
\frac{d^2 \sigma_{\pi}(\hat{p}_T, z_t)}{dp_T dz_t} = \frac{d\sigma_q}{dp_T} \times D^q_{\pi}(z_t) = \frac{A}{\hat{p}^{n-1}_T} \times D^q_{\pi}(z_t)
\]

Fragment spectrum given \(\hat{p}_T \)

Power law spectrum of parton \(\hat{p}_T \)

Let \(\hat{p}_T = p_T/z_t \) \(\frac{d\hat{p}_T}{dp_T}\big|_{z_t} = 1/z_t \)

\[
\frac{d^2 \sigma_{\pi}(p_T, z_t)}{dp_T dz_t} = \frac{A}{p^n_T} \times z_t^{n-2} D^q_{\pi}(z_t)
\]

Fragment spectrum given \(p_T \) is weighted to high \(z_t \) by \(z_t^{n-2} \)

where \(z_{t_{\min}}|_{p_T} = x_T \)

\[
D^q_{\pi}(z_t) = B e^{-bz_t}
\]

Incomplete gamma function

\[
\frac{1}{p_T} \frac{d\sigma_{\pi}}{dp_T} = AB \int_{x_T}^{1} dz_t \ z_t^{n-2} \exp(-bz_t)
\]

Good approximation \(x_T \rightarrow 0 \) upper limit \(\rightarrow \infty \)

\[
\frac{1}{p_T} \frac{d\sigma_{\pi}}{dp_T} \approx \frac{\Gamma(n-1)}{b^{n-1}} \frac{AB}{p_T^n}
\]

Bjorken parent-child relation: parton and particle invariant \(p_T \) spectra have same power \(n \), etc.
Shape of x_E distribution depends on \hat{x}_h and n but not on b—i.e. FFF failed.

$$n = 8.1$$

$$\frac{dP_\pi}{dx_E|_{p_{T_l}}} \approx \langle m \rangle (n - 1) \frac{1}{\hat{x}_h} \frac{1}{(1 + \frac{x_E}{\hat{x}_h})^n}$$

\hat{x}_h

1.0

0.8

0.6

0.4

0.2

Moriond 2008
Shape of x_E distribution depends on \hat{x}_h and n but not on b-i.e. FFF failed

$$n = 8.1$$

$$\left. \frac{dP}{dx_E} \right|_{p_{T_b}} \approx N(n-1) \frac{1}{\hat{x}_h(1 + \frac{x_E}{\hat{x}_h})^n}$$

\hat{x}_h

1.0

0.8

0.6

0.4

0.2
Fit works for PHENIX p+p PRD 74, 072002

Calculation from Fragmentation Fn.

New fits. Very nice!
Excellent χ^2 in most cases
\(\hat{\chi}_h \sim 0.75 \) due to \(k_T \) smearing in p-p, dAu

\(k_T \) and \(k_T \) smearing was a big topic at Moriond 1979
Define Head region (HR) and Shoulder regions (SR) for wide away side correlation.

Away side correlation in Au+Au is generally wider than p-p with complicated structure.
Fit H+S and HO (head only)
4<p_T<5 GeV/c
Statistical two-component distribution (⇒punch-through) for Head-Only
Formula works in Au+Au: Away-side x_E distribution is steeper in Au+Au than p-p indicating energy loss

Since the trigger jet is surface biased, the away jet must cross through nearly the entire medium except in the case of tangential emission. The decrease of $\hat{x}_h = \hat{p}_{Ta} / \hat{p}_{Tt}$ in Au+Au central collisions relative to p-p by a factor of ~0.5-0.6 indicates that the away jet has lost energy by traversing the medium and gives a quantitative measurement.
Two-component distribution (punch-through) is now clear for $6 < p_T < 10 \text{ GeV/c}$
Two-component distribution (punch-through) is now clear for $6 < p_T^{\text{trig}} < 10$ GeV/c
The End
Away side correlations in Au+Au much wider than in p-p

Away side distribution much wider in A+A than p-p in correlation fn. C(Δφ)
Subtraction of v2 (flow?) effect → J(Δφ) causes a dip at 180° which gives 2
peaks at π±D~1 radian independent of
system and centrality for N_{part} >100.
This is also seen for (auto) correlations
of low p_T particles. Is this the medium
reaction to the passage of a color-
charged parton? Stay tuned, much more
study needed.
STAR dAu, AuAu

STAR-PRL 97 (2006) 162301
8 < pTt < 15 GeV/c

STAR-PRL 95 (2005) 152301

PHENIX dAu PRC73 π–h Fig.30
N
2.45
\bar{x}_h
0.74

★ STAR dAu PRL97 h–h p_T=9.38 GeV/c

Moriond 2008
The leading-particle effect a.k.a. trigger bias

- Due to the steeply falling power-law spectrum of the scattered partons, the inclusive particle p_T spectrum is dominated by fragments biased towards large z. This was unfortunately called trigger bias by M. Jacob and P. Landshoff, Phys. Rep. 48C, 286 (1978) although it has nothing to do with a trigger.

$$\frac{d^2\sigma_\pi(\hat{p}_T, z_t)}{d\hat{p}_Tdz_t} = \frac{d\sigma_q}{d\hat{p}_T} \times D^q_\pi(z_t)$$

Fragment spectrum given \hat{p}_T

\[\frac{A}{\hat{p}_T^{n-1}} \times D^q_\pi(z_t)\]

Power law spectrum of parton \hat{p}_T

\[\frac{1}{z_t(p_T/z_t)^{n-1}} \times D^q_\pi(z_t)\]

Fragment spectrum given p_T is weighted to high z_t by z_t^{n-2}

where \(z_{t_{\text{min}}}|_{p_T} = x_{T_t}\)

\[D^q_\pi(z_t) = Be^{-b z_t}\] \(\langle z_t \rangle = 1/b\)

Moriond 2008

PHOENIX

M. J. Tannenbaum 29/23
We can integrate over the trigger jet z_t and find the inclusive pion cross section:

$$\frac{1}{p_{T_t} \, dp_{T_t}} \frac{d\sigma_{\pi}}{dp_{T_t}} = \frac{AB}{p_{T_t}^{n}} \int_{x_{T_t}}^{1} dz_t z_t^{n-2} \exp -b z_t ,$$ \hspace{1cm} (8)

which can be written as:

$$\frac{1}{p_{T_t} \, dp_{T_t}} \frac{d\sigma_{\pi}}{dp_{T_t}} = \frac{AB}{p_{T_t}^{n}} \frac{1}{b^{n-1}} [\Gamma(n - 1, bx_{T_t}) - \Gamma(n - 1, b)] \hspace{1cm} (9)$$

where

$$\Gamma(a, x) \equiv \int_{x}^{\infty} t^{a-1} e^{-t} dt$$ \hspace{1cm} (10)

is the Complementary or upper Incomplete Gamma function, and $\Gamma(a, 0) = \Gamma(a)$ is the Gamma function, where $\Gamma(a) = (a - 1)!$ for a an integer.

A reasonable approximation for small x_T values is obtained by taking the lower limit of Eq. 8 to zero and the upper limit to infinity, with the result that:

$$\frac{1}{p_{T_t} \, dp_{T_t}} \frac{d\sigma_{\pi}}{dp_{T_t}} \approx \frac{\Gamma(n - 1) AB}{b^{n-1} p_{T_t}^{n}}$$

Bjorken parent-child relation: parton and particle invariant p_T spectra have same power n

$$\langle z_t(p_{T_t}) \rangle = \frac{1}{x_{T_t}} \int_{x_{T_t}}^{1} dz_t z_t^{n-1} \exp -b z_t = \frac{1}{b} \frac{[\Gamma(n, bx_{T_t}) - \Gamma(n, b)]}{[\Gamma(n - 1, bx_{T_t}) - \Gamma(n - 1, b)]} \approx \frac{n - 1}{b}$$

Inclusive high p_T particle has $n-1$ times larger $\langle z \rangle$ than unbiased fragmentation, $\langle z \rangle = 1/b$
2 particle Correlations

\[\frac{d^2 \sigma_\pi(\hat{p}_{T_t}, z_t)}{d\hat{p}_{T_t} dz_t} = \frac{d\sigma_q}{d\hat{p}_{T_t}} \times D^q_\pi(z_t) \]

Also detect fragment with \(z_a = \frac{p_{T_a}}{\hat{p}_{T_a}} \)

from away jet with \(\frac{\hat{p}_{T_a}}{\hat{p}_{T_t}} \equiv \hat{x}_h \)

\[\frac{d^3 \sigma_\pi(\hat{p}_{T_t}, z_t, z_a)}{d\hat{p}_{T_t} dz_t dz_a} = \frac{d\sigma_q}{d\hat{p}_{T_t}} \times D^q_\pi(z_t) \times D^q_\pi(z_a) \]

\[z_a = \frac{p_{T_a}}{\hat{p}_{T_a}} = \frac{p_{T_a}}{\hat{x}_h \hat{p}_{T_t}} = \frac{z_t p_{T_a}}{\hat{x}_h p_{T_t}} \]

\[\frac{d\sigma_\pi}{dp_{T_t} dz_t dp_{T_a}} = \frac{1}{\hat{x}_h p_{T_t}} \frac{d\sigma_q}{d(\frac{p_{T_t}}{z_t})} D^q_\pi(z_t) D^q_\pi(\frac{z_t p_{T_a}}{\hat{x}_h p_{T_t}}) \]

 Appears to be sensitive to away jet Frag. Fn.
Amazingly, I got a neat analytical result

\[
\frac{d^3\sigma_\pi}{dp_{T_t}dz_tdp_{T_a}} = \frac{1}{\hat{x}_h p_{T_t}} \frac{d\sigma_q}{d(p_{T_t}/z_t)} D_q^{\pi}(z_t) D_q^{\pi}(\frac{z_t p_{T_a}}{\hat{x}_h p_{T_t}})
\]

(1)

Take: \(D(z) = B \exp(-bz)\)
\(\frac{d\sigma_q}{dp_{T_t}} = A \frac{\hat{\rho}_{T_t}^{n-1}}{\hat{\rho}_{T_t}^{n-1}} = A\frac{z_t^{n-1}}{\hat{x}_h p_{T_t}}\)

(2)

\[
\frac{d^2\sigma_\pi}{dp_{T_t}dp_{T_a}} = \frac{B^2}{\hat{x}_h p_{T_t}^n} \int_{x_{T_t}}^{x_{T_t}p_{T_a}} dz_t z_t^{n-1} \exp[-b z_t(1 + \frac{p_{T_a}}{\hat{x}_h p_{T_t}})]
\]

\[
\frac{d\sigma_\pi}{dp_{T_t}} = \frac{AB}{p_{T_t}^{n-1}} \int_{x_{T_t}}^{1} dz_t z_t^{n-2} \exp -b z_t
\]

Using: \(\Gamma(a, x) \equiv \int_{x}^{\infty} t^{a-1} e^{-t} \, dt\)
Where \(\Gamma(a,0)= \Gamma(a)=(a-1) \Gamma(a)\)
The final result

\[\frac{d^2 \sigma_\pi}{dp_{Tt} dp_{Ta}} \approx \frac{\Gamma(n) B^2 A}{b^n \hat{x}_h p_T^n (1 + \frac{p_{Ta}}{\hat{x}_h p_{Tt}})^n} \]

\[\frac{d\sigma_\pi}{dp_{Tt}} \approx \frac{\Gamma(n - 1) AB}{b^{n-1} p_T^{n-1}} \]

\[\frac{dP_\pi}{dp_{Ta}} \bigg|_{p_{Tt}} \approx \frac{B(n - 1)}{b p_{Tt}} \frac{1}{\hat{x}_h (1 + \frac{p_{Ta}}{\hat{x}_h p_{Tt}})^n} \]

In the collinear limit, where \(p_{Ta} = x_E p_{Tt} \):

\[\frac{dP_\pi}{dx_E} \bigg|_{p_{Tt}} \approx \frac{B(n - 1)}{b} \frac{1}{\hat{x}_h (1 + \frac{x_E}{\hat{x}_h})^n} \]

Where \(B/b \approx \langle m \rangle \approx b \) is the mean charged multiplicity in the jet
Why dependence on the Frag. Fn. vanishes

• The only dependence on the fragmentation function is in the normalization constant B/b which equals $\langle m \rangle$, the mean multiplicity in the away jet from the integral of the fragmentation function.

• The dominant term in the x_E distribution is the Hagedorn function $1/(1 + x_E/\hat{x}_h)^n$ so that at fixed p_{Tt} the x_E distribution is predominantly a function only of x_E and thus exhibits x_E scaling, as observed.

• The reason that the x_E distribution is not sensitive to the shape of the fragmentation function is that the integral over z_t in (1, 2) for fixed p_{Tt} and p_{Ta} is actually an integral over jet transverse momentum \hat{p}_{Tt}. However since the trigger and away jets are always roughly equal and opposite in transverse momentum (in p+p), integrating over \hat{p}_{Tt} simultaneously integrates over \hat{p}_{Ta}. The integral is over z_t, which appears in both trigger and away side fragmentation functions in (1).
High p_T in A+B collisions---T_{AB} Scaling

- For point-like processes, the cross section in $p+A$ or $A+B$ collisions compared to $p-p$ is simply proportional to the relative number of pointlike encounters
 - A for $p+A$, AB for $A+B$ for the total rate
 - T_{AB} the overlap integral of the nuclear profile functions, as a function of impact parameter b
As measured at the ISR by Darriulat, etc.

Figures from P. Darriulat, ARNPS 30 (1980) 159-210 showing that Jet fragmentation functions in vp, e⁺e⁻ and pp (CCOR) are the same with the same dependence of b (exponential slope) on \hat{s}.
Three things are dramatically different in Relativistic Heavy Ion Physics than in p-p physics

• the multiplicity is \(\sim A \sim 200 \) times larger in AA central collisions than in p-p \(\Rightarrow \) huge energy in jet cone: \(300 \text{ GeV} \) for \(R=1 \) at \(\sqrt{s_{\text{NN}}}=200 \text{ GeV} \)
• huge azimuthal anisotropies which don’t exist in p-p which are interesting in themselves, and are useful, but sometimes troublesome.
• space-time issues both in momentum space and coordinate space are important in RHI: for instance what is the spatial extent of parton fragmentation, is there a formation time/distance?