Precision predictions for Z' production at the LHC

Benjamin Fuks (Universität Freiburg)

In collaboration with:
- ITP Karlsruhe: Q. Li,
- LPSC Grenoble / ATLAS collaboration: F. Ledroit, J. Morel,
- LPSC Grenoble / Theory group: M. Klasen.

Rencontres de Moriond
QCD and High Energy Interactions
March 10, 2008
Outline

1. Introduction
 - Grand Unified Theories and Z' bosons
 - Soft and collinear radiation - need for resummation

2. Joint resummation formalism
 - Joint resummation formalism
 - Matching to the fixed order

3. Results
 - Invariant-mass and transverse-momentum spectra
 - Comparison: PYTHIA, MC@NLO and joint resummation

4. Summary - conclusions
1 **Introduction**
- Grand Unified Theories and Z' bosons
- Soft and collinear radiation - need for resummation

2 **Joint resummation formalism**
- Joint resummation formalism
- Matching to the fixed order

3 **Results**
- Invariant-mass and transverse-momentum spectra
- Comparison: PYTHIA, MC@NLO and joint resummation

4 **Summary - conclusions**
Theoretical model: \[\text{[Green, Schwarz (1984); Hewett, Rizzo (1989)]}\]

* Ten-dimensional string theories $E_8 \times E_8$:
 \begin{itemize}
 \item Anomaly-free and contain chiral fermions.
 \item Compactified to E_6.
 \end{itemize}

* Breaking to the Standard Model (SM) gauge groups:

\[
E_6 \rightarrow SO(10) \times U(1)_\psi \\
\rightarrow SU(5) \times U(1)_\chi \times U(1)_\psi \\
\rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_\chi \times U(1)_\psi.
\]

* Additional bosons Z_ψ and Z_χ.

Toy model: $Z' \equiv Z_\chi$, with mass of 1 TeV.
Soft and collinear radiation - need for resummation

- Partonic invariant-mass and transverse-momentum distributions at $\mathcal{O}(\alpha_s)$:

\[
\frac{d\hat{\sigma}_{ab}}{dM^2} = \hat{\sigma}_{ab}^{(0)}(M) \delta(1 - z) + \frac{\alpha_s}{\pi} \hat{\sigma}_{ab}^{(1)}(M, z) + \mathcal{O}(\alpha_s^2),
\]

\[
\frac{d^2\hat{\sigma}_{ab}}{dM^2 \, dq_T^2} = \hat{\sigma}_{ab}^{(0)}(M) \delta(q_T^2) \delta(1 - z) + \frac{\alpha_s}{\pi} \hat{\sigma}_{ab}^{(1)}(M, z, q_T) + \mathcal{O}(\alpha_s^2),
\]

where $z = M^2/s$.

- Soft and collinear radiation:
 - $\alpha_s^n \left(\frac{\ln^m(1-z)}{1-z} \right)$ and $\frac{\alpha_s^n}{q_T^2} \ln^m \frac{M^2}{q_T^2}$ terms in the distributions ($m \leq 2n - 1$).
 - Large at $z \lesssim 1$ or small q_T.
 - Fixed-order theory unreliable in these kinematical regions.

- Resummation to all orders needed.
 - Joint resummation considered.
 - Reliable perturbative results.
 - Correct quantification of the soft-collinear radiation.
Outline

1. Introduction
 - Grand Unified Theories and Z' bosons
 - Soft and collinear radiation - need for resummation

2. Joint resummation formalism
 - Joint resummation formalism
 - Matching to the fixed order

3. Results
 - Invariant-mass and transverse-momentum spectra
 - Comparison: PYTHIA, MC@NLO and joint resummation

4. Summary - conclusions
Conjugate spaces

- Conjugate spaces introduced:
 - **Mellin transform**: N variable conjugate to $\tau = M^2/s_h$.
 - **Fourier transform**: Impact-parameter b conjugate to q_T.

- Hadronic cross sections: convolutions \rightarrow products.

$$\frac{d^2\sigma^{\text{(res)}}}{dM^2 dq_T^2}(N, b) = \sum_{a,b} f_{a/h_1} (N + 1) f_{b/h_2} (N + 1) W_{ab}(N, b).$$

- Expression of the logarithms in conjugate spaces:

$$\left(\frac{\ln(1-z)}{1-z} \right) \quad \rightarrow \quad \ln^2 \bar{N} \quad \text{with} \quad \bar{N} = N \exp[\gamma_E],$$

$$\frac{1}{q_T^2} \ln \frac{M^2}{q_T^2} \quad \rightarrow \quad \ln \bar{b}^2 \quad \text{with} \quad \bar{b} = \frac{b M}{2} \exp[\gamma_E],$$

$$\Rightarrow \quad L = \ln \left(\bar{b} + \frac{\bar{N}}{1 + \frac{\bar{b}}{4\bar{N}}} \right).$$

- No additional subleading terms in perturbative expansions of $\sigma^{\text{(res)}}$.

[Kulesza, Sterman, Vogelsang (2002)]
The resummed partonic cross sections

- The process-dependence is factorized outside the exponent:
 \[\mathcal{W}_{ab}(N, b) = \mathcal{H}_{ab}(N) \exp \left\{ \mathcal{G}(N, b) \right\}. \]

- The \(\mathcal{H} \)-coefficient:
 * Can be computed perturbatively as series in \(\alpha_s \), from fixed-order results.
 * Is process-dependent.
 * Contains all the finite terms in the limits \(N \to \infty \) and \(b \to \infty \).
 (\(\equiv \) real and virtual collinear radiation, hard contributions).

- The Sudakov form factor \(\mathcal{G} \):
 * Can be computed perturbatively as series in \(\alpha_s L \).
 * Is process-independent (universal).
 * Contains the soft-collinear radiation.
Matching to the fixed order

- **Matching procedure:**
 * Adding both resummation and fixed-order results.
 * Subtracting the expansion in α_s^m of the resummed result.
 * No double-counting of the logarithms.
 \Rightarrow Consistent matching.

- **Master formula:**

\[
\frac{d^2\sigma}{dM^2 \, dq_T^2}(\tau, q_T) = \frac{d^2\sigma^{(F.O.)}}{dM^2 \, dq_T^2}(\tau, q_T) \\
+ \oint_{C_N} \frac{dN}{2\pi i} \tau^{-N} \int \frac{bd}{2} J_0(q_T b) \left[\frac{d^2\sigma^{(\text{res})}}{dM^2 \, dq_T^2}(N, b) - \frac{d^2\sigma^{(\text{exp})}}{dM^2 \, dq_T^2}(N, b) \right].
\]

- **Summary:**
 * Far from the critical regions, $d\sigma^{(\text{res})} \approx d\sigma^{(\text{exp})} \equiv$ perturbative theory.
 * In the critical regions, $d\sigma^{(F.O.)} \approx d\sigma^{(\text{exp})} \equiv$ pure resummation.
 * In the intermediate regions: both contribute.
Introduction

1. Introduction
 - Grand Unified Theories and Z' bosons
 - Soft and collinear radiation - need for resummation

2. Joint resummation formalism
 - Joint resummation formalism
 - Matching to the fixed order

3. Results
 - Invariant-mass and transverse-momentum spectra
 - Comparison: PYTHIA, MC@NLO and joint resummation

4. Summary - conclusions
Invariant-mass and transverse-momentum spectra

- **Invariant-mass spectrum:**
 - Resummation effect reduced (far from the critical regions).

- **Transverse-momentum spectrum:**
 - Finite results at small q_T.
 - Resummation effects important even at intermediate q_T.

[BF, Klasen, Ledroit, Li, Morel (in press)]
Factorization and renormalization scale dependence

\[p p \rightarrow \gamma, Z, Z' \rightarrow l^+ l^- (LHC) \]

- **Total cross section:**
 - **Leading order:** full dependence related to \(\mu_F \) (\(\sim 7\% \)).
 - **Next-to-leading order:** introduction of \(\mu_R \) and the \(qg \) channel (\(\sim 17\% \)).
 - **Resummation:** reduction of scale dependence (\(\sim 9\% \)).
 - Nice stabilization of the theoretical prediction.
PYTHIA, MC@NLO and joint resummation

- **PYTHIA**: [Sjöstrand, Mrenna, Skands (2006)]
 - Parton showers ordered by virtualities.
 - Backwards evolution scheme.
 - Momentum conservation at each branching.
 - Branching rates \Leftrightarrow \textit{(Leading logarithmic)} Sudakov form factor.
 - Matched with leading-order matrix elements.
 \equiv \text{Leading order} + \text{leading logarithms} + \text{momentum-conservation}.

- **MC@NLO**: [Frixione, Webber (2002)]
 - Parton showers ordered by angles (HERWIG [Corcella \textit{et al.} (2001)]).
 - Backwards evolution scheme.
 - Branching rates \Leftrightarrow \textit{(Leading logarithmic)} Sudakov form factor.
 - Matched with next-to-leading-order matrix elements.
 \equiv \text{Next-to-leading order} + \text{leading logarithms}.

- **Joint resummation**: [Bozzi, BF, Klasen (2008)]
 \equiv \text{Next-to-leading order} + \text{next-to-leading logarithms}.
Comparison: PYTHIA, MC@NLO and joint resummation

PYTHIA \((\text{power shower})\): mass-spectrum multiplied by a \(K\)-factor of 1.26.

PYTHIA \(q_T\)-spectrum much too soft, peak not well predicted.

Good agreement between MC@NLO and resummation.

[BF, Klasen, Ledroit, Li, Morel (in press)]
Outline

1. **Introduction**
 - Grand Unified Theories and Z' bosons
 - Soft and collinear radiation - need for resummation

2. **Joint resummation formalism**
 - Joint resummation formalism
 - Matching to the fixed order

3. **Results**
 - Invariant-mass and transverse-momentum spectra
 - Comparison: PYTHIA, MC@NLO and joint resummation

4. **Summary - conclusions**
Summary - conclusions

- **Soft and collinear radiation in Z' production at hadron colliders:**
 * Reliable perturbative results \Leftrightarrow Resummation.
 * Joint resummation has been implemented.

- **Effects:**
 * **Important**, even far from the critical regions.
 * Uncertainties from scales under good control.

- **Check of Monte Carlo generators**
 * Significant shortcomings in normalization and shapes for PYTHIA.
 * MC@NLO reaches (almost) the same precision level as resummation.
 BUT: easier implementation in the analysis chains of any experiment.

- **Download: MC@NLO and resummation codes:**
 * http://lpsc.in2p3.fr/klasen/software/
 * http://pheno.physik.uni-freiburg.de/~fuks/resum.html