Neural Network Determination of Parton Distribution Functions

Maria Ubiali

School of Physics, University of Edinburgh

Moriond QCD and High Energy Interactions
La Thuile, 13 March 2008

The NNPDF Collaboration
R.D.Ball1, L.Del Debbio1, S.Forte2, A.Guffanti3, J.I.Latorre4, A. Piccione2, J. Rojo5, M.U.1

1 PPT Group, School of Physics, University of Edinburgh
2 Dipartimento di Fisica, Universit\`a di Milano
3 Physikalisches Institut, Albert-Ludwigs-Universit\`at Freiburg
4 Departament d’Estructura i Constituents de la Matèria, Universitat de Barcelona
5 LPTHE, Université Paris VI et Paris VII
Given a set of data points we must determine a set of functions with error.

We need an error band in the space of functions, i.e. a probability density $P[q(x)]$ in the space of PDFs, $q(x)$. For an observable F depending on PDFs:

$$\langle F[q(x)] \rangle = \int [Dq] F[q(x)] P[q(x)]$$

Standard approach, choose a basis of functions and project PDFs on it: the ∞-dimensional space of function reduces to a finite-dimensional space of parameters.

Issues:

- Non trivial propagation of errors: non-gaussian errors and incompatible data.
- The error associated to the choice of parametrisation is difficult to assess.
NNPDF approach

\[\langle F[q(x)] \rangle = \int [Dq] F[q(x)] P[q(x)] \quad \rightarrow \quad \langle F[q(x)] \rangle = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} F[q^{(k)(\text{net})}(x)] \]
Monte Carlo determination of errors:

After fitting, the error of an observable depending on PDFs →

\[
\sigma_{\mathcal{F}[q(x)]} = \sqrt{\langle \mathcal{F}[q(x)]^2 \rangle - \langle \mathcal{F}[q(x)] \rangle^2}
\]

Neural Networks as redundant and unbiased parametrisation of PDFs:

* Each neuron receives input from neurons in preceding layer.
* Activation determined by weights and thresholds according to a non linear function:

\[
\xi_i = g\left(\sum_j \omega_{ij} \xi_j - \theta_i\right), \quad g(x) = \frac{1}{1 + e^{-x}}
\]

Dynamical stopping criterion in order to fit data and not statistical noise.

* Divide data in two sets: training and validation.
* Minimisation is performed only on the training set. The validation χ^2 for the set is computed.
* When the training χ^2 still decreases while the validation χ^2 stops decreasing → STOP.
- **NLO fit.**
- **ZM-VFN** treatment of heavy quarks.
- All DIS data included.
- **Flavor Assumptions:**
 - Symmetric strange sea $s(x) = \bar{s}(x)$
 - Strange sea proportional to non-strange sea $\bar{s}(x) = \frac{C}{2}(\bar{u}(x) + \bar{d}(x))$ ($C = 0.5$)

- **Parametrization of 4+1 combinations of PDFs at $Q_0^2 = 2$ GeV2:**
 - Singlet : $\Sigma(x)$ $\mapsto NN_{\Sigma}(x)$ 2-3-2-1 20 pars
 - Gluon : $g(x)$ $\mapsto NN_{g}(x)$ 2-3-2-1 20 pars
 - Total valence : $V(x) = u_V(x) + d_V(x)$ $\mapsto NN_V(x)$ 2-3-2-1 20 pars
 - Non-singlet triplet : $T_3(x)$ $\mapsto NN_{T3}(x)$ 2-3-2-1 20 pars
 - Sea asymmetry : $\Delta_S(x) = \bar{d}(x) - \bar{u}(x)$ $\mapsto NN_{\Delta}(x)$ 2-3-1 13 pars

93 parameters
Some Very Preliminary Results

Singlet PDF - Log scale

Gluon PDF - Log scale

ValTot PDF - Lin scale

SeaAsymm PDF - Lin scale

Triplet PDF - Lin scale

F_2 Proton

Neutrino cross section

CC reduced xsec

pdfs

observables

Maria Ubiali
Neural PDFs for LHC
Conclusions

- Standard approaches to PDFs fitting might lead to underestimation of errors associated with parton densities.
- Combination of Monte Carlo techniques and Neural Networks as unbiased interpolating functions has proved to be a fast and robust alternative method.
- A non singlet fit has been published [hep-ph/0701127] and a full DIS fit will be published very soon.