Higgs Searches at the LHC

Trevor Vickey

University of Wisconsin, Madison
On behalf of the ATLAS and CMS Collaborations

March 11, 2008

XLIIIrd Rencontres de Moriond QCD
The primary objective of the LHC

Elucidate the mechanism responsible for electroweak symmetry breaking

All experimental data to date favors a light Higgs

- SM: $M_H = 87^{+36}_{-27} \text{ GeV}$; $M_H < 160 \text{ GeV} @ 95\% \text{ CL}$
- LEP Direct Limit: $M_H > 114.4 \text{ GeV} @ 95\% \text{ CL}$

\[\Lambda \] is the scale of new physics beyond the Standard Model

\[\Delta \chi^2 \]

Vacuum stability

T. Hambye and K. Riesselmann hep-ph/9708416

Trevor Vickey / Moriond 2008
Higgs production at the LHC

Vector Boson Fusion

The two “spectator” quarks make for a very distinct final state

<10% unc. NLO

Gluon-gluon Fusion

Large backgrounds for low-mass Higgs searches

10-20% unc. NNLO

Associated Production

~10% unc. NLO

<5% unc. NNLO

Allows for triggering regardless of Higgs decay mode

NLO cross-sections

SM Higgs discovery final states

At low mass ($M_H < 2M_Z$)

- Dominant decay through bb; enormous QCD background, suppressed in ttH
- $H \rightarrow \tau\tau$ accessible through Vector Boson Fusion (VBF)
- $H \rightarrow WW(*)$ accessible through gluon-gluon fusion and VBF
- $H \rightarrow \gamma\gamma$ has a low BR (decays through top and W loops); but due to excellent γ/jet separation and γ resolution is still very significant
- $H \rightarrow ZZ^* \rightarrow 4l$ also accessible

For higher masses

- $H \rightarrow WW$ and $H \rightarrow ZZ \rightarrow 4l$ final-states

Trevor Vickey / Moriond 2008
The ATLAS and CMS Experiments
Designed to search for the Higgs over a wide mass range

Hermetic calorimetry
- Exceptional measurement of missing transverse energy, jets to high eta

Exceptional particle identification
- Muons: Efficiency ~90% Jet Rejection ~10^5
- Electrons: Efficiency ~80% Jet Rejection ~10^5
- Photons: Efficiency ~80% Jet Rejection ~10^3
- b-Jet ID: Efficiency ~60% Light Jet Rejection ~10^2
- Tau ID: Efficiency ~50% Jet Rejection ~10^2

Electron, muon and photon energy and momentum resolution of ~2-3%
Strategy and Start-up

Anticipating the start of the LHC

• Summer 2008
• Few ~100 pb\(^{-1}\) by the year’s end
• Parts of both ATLAS and CMS have already taken cosmic ray data

Understand the detectors…

• Diagnose hot or dead channels
• Tally up dead material
• Tracking detector alignment
• Tune the detector simulations to better match ATLAS and CMS

…do Standard Model measurements

• Examine our standard candles
• Demonstrate the ability to measure Ws, Zs and tops (b-jet identification)

…then search for the Higgs

LHC The first five years?

<table>
<thead>
<tr>
<th>Year</th>
<th>Integrated Luminosity</th>
<th>Cross Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>~100 pb(^{-1})</td>
<td>(10^{31} \text{ – } 10^{32} \text{ cm}^{-2} \text{ s}^{-1})</td>
</tr>
<tr>
<td>2009</td>
<td>~1 fb(^{-1})</td>
<td>(10^{32} \text{ cm}^{-2} \text{ s}^{-1})</td>
</tr>
<tr>
<td>2010</td>
<td>~10 fb(^{-1})</td>
<td>(2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1})</td>
</tr>
<tr>
<td>2011</td>
<td>~30 fb(^{-1})</td>
<td>(2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1})</td>
</tr>
<tr>
<td>2012</td>
<td>~100 fb(^{-1})</td>
<td>(2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1})</td>
</tr>
</tbody>
</table>

1 pb\(^{-1}\) = 3 days at \(10^{31} \text{ cm}^{-2} \text{ s}^{-1}\)

Trevor Vickey / Moriond 2008
The “Golden Mode”

- Very clean signal (looking for final states with 4e, 4μ, 2e2μ)
- Excellent mass resolution (1.5 – 2 GeV for $M_H = 130$ GeV)
- Powerful analysis in a wide mass range

Experimental issues:

- Zbb and tt rejection (leptons non-isolated, with activity around the leptons in the calorimeter and tracker; high impact parameter significance)
- $qq \rightarrow ZZ$ known at NLO; $gg \rightarrow ZZ$ is added as 30% of LO $qq \rightarrow ZZ$ (no generator, yet)
$H \rightarrow \gamma \gamma$

Final state produced through W, top and bottom loops

Powerful for low masses
- Significance of $6 - 8\sigma$ with 30 fb$^{-1}$
- Excellent mass resolution ($\sim 1.5 - 2$ GeV)

Experimental issues
- Electromagnetic calorimeter calibration
- Requires excellent γ/jet separation
- Conversion recovery

Recent developments
- Split events into categories (by jet multiplicity, energy ratios and η region)
- Inclusive, 1 and 2-jet analyses; combine to increase significance
- Use of fits and a Likelihood Ratio for discovery, systematics
\(H \rightarrow \gamma\gamma \)

Diphoton background now calculated at NLO
- Agrees with the data from the Tevatron

Backgrounds can be taken from the sidebands…

Inclusive Analysis
H → WW → 2l2ν

Unlike other channels, full mass reconstruction is not possible

- Essentially a counting experiment
- Accurate background estimate is critical

Most significant ~160 GeV

- BR(H→WW) > 95%

Dominant backgrounds

- ttbar (suppressed with a jet veto)
- WW (exploit spin correlations)
Forward Jet Tagging and the Central Jet Veto

We can get the upper-hand in the VBF channels

Forward Jet Tagging
- D. Rainwater, D. Zeppenfeld, et al.

\[\eta_{j1} \cdot \eta_{j2} < 0 \]

\[|\Delta \eta_{jj}| > 3.5 - 4 \]

\[m_{jj} > 500 - 700 \text{ GeV} \]

Central Jet Veto
- V.Barger, K.Cheung and T.Han in PRD 42 3052 (1990)

Veto events with extra jets in the central region

Tagging Jet

Higgs decay products

S. Asai, ATL-PHYS-2003-005
VBF $H \rightarrow \tau\tau$

A very significant channel for low masses
- Important for studying the coupling of Higgs to leptons
- Three final states lepton-lepton, lepton-hadron, hadron-hadron
- Triggers for the fully hadronic mode are under investigation

Mass reconstruction via the collinear approximation
- Approximation breaks down when the two taus are back-to-back
- Mass resolution limited by missing transverse energy ($\sim 8 – 10$ GeV)

Experimental issues:
- Tau tagging (Likelihood, Neural Net methods)
- Z+jets background (especially for low masses)
- tt rejection (b-jet ID and veto for lepton-lepton)
Data-driven control samples are being explored for many backgrounds

- The relative contributions from different jet multiplicities are not known
- Unknowns related to critical analysis cut-specific variables exist

For the dominant background, collect $\text{Z} \rightarrow \mu\mu$ and $\text{Z} \rightarrow \text{ee}$ events from data and use TAUOLA to decay the leptons to taus

In this way we can emulate each of the lepton-lepton, lepton-hadron and hadron-hadron final states

Obtain both the background shape and normalization from data
VBF $H \rightarrow WW \rightarrow l\nu qq$

One of the best channels for intermediate and high Higgs masses

- A VBF analysis reaping the benefits of the CJV and Tagging Jets selection

Event Selection

- VBF tagging jets selection
- Central Jet Veto
- Isolated lepton
- 4 jets
- Large missing transverse energy

Mass reconstruction possible

- Backgrounds: $t\bar{t}$bar, W+jets, WW+jets
- Exploring data-driven approaches for obtaining background shapes
Luminosity for discovery or exclusion

- ~few 100 pb⁻¹, some exclusion @ 95% CL
- ~1 fb⁻¹, 5σ discovery if $M_H \sim 160 - 170$ GeV
- ~10 fb⁻¹, discovery over a broad mass range
MSSM Higgs at the LHC

Minimal Supersymmetric extension to the SM: \((A, H, h, H^\pm)\)

- As one example here, consider \(A / H / h \rightarrow \mu\mu\)
- Not visible in the SM
- Enhanced in the MSSM by \(\sim \tan^2 \beta\); excellent mass resolution as opposed to \(\tau\tau\)

Direct and associated production

Divide analysis into two uncorrelated channels

Initial event selection:
- Di-muon selection, low event MET, b-tag
- 0 b-jet
- \(\geq 1\) b-jet
 - Acoplanarity, sum \(p_T\) of all jets
MSSM Higgs at the LHC

Combine the 0 and ≥ 1 b-jet analyses to increase the significance

- A very similar analysis has been explored for the $\tau\tau$ channel

Reconstructed Invariant mass

$\tan\beta$ for a 5σ Discovery

10 fb$^{-1}$ Alone

10 fb$^{-1}$ Combined

Trevor Vickey / Moriond 2008
Conclusions
If it is there, ATLAS and CMS are in a good position to find the Higgs…

• Unless it is discovered first at the Tevatron
• For a SM Higgs ATLAS and CMS need ~1 – 30 fb⁻¹
• How long will it take to get that much integrated luminosity from the LHC?
• How quickly will we understand the detectors?

Post-discovery questions that would need be answered…

• Is it the simple Standard Model Higgs?
• Does it have the expected couplings to various particle types?
• Are there more Higgs particles (à la Supersymmetry)
• Higgs discovery also raises the “hierarchy” problem

ATLAS and CMS are on track to try and answer these questions.
Backup Slides
The ATLAS Experiment
The CMS Experiment
ttH(H→bb)

A very complex final state

- Good discovery channel at low masses
- Determination of the Yukawa coupling
- Dominant backgrounds tt+jets production
- Also considering fully-hadronic and dilepton final states

Experimental issues:

- b-tagging (efficiency ~ε_b^4)
- Good understanding of background shape at turn-over
MSSM Higgs at the LHC

Summary of CMS reach in $M_A \tan \beta$

Trevor Vickey / Moriond 2008
MSSM Higgs with ATLAS

\[\tan \beta \]

\[m_A \text{ (GeV)} \]

- $t \rightarrow bH^+$, $H^+ \rightarrow \tau \nu$
- $h \rightarrow \gamma \gamma$ and $Wh/\tau h$, $h \rightarrow \gamma \gamma$
- tth, $h \rightarrow bb$
- $H^+ \rightarrow tb$
- $H/A \rightarrow \mu \mu$
- $H/A \rightarrow \tau \tau$
- $gb \rightarrow tH^+$, $H^+ \rightarrow \tau \nu$
- $H \rightarrow ZZ^{(w)} \rightarrow 4$ leptons
- $H \rightarrow hh \rightarrow bb\gamma$
- $A \rightarrow Zh \rightarrow llbb$
- $H/A \rightarrow tt$

ATLAS

$\sqrt{s} dt = 300 \text{ fb}^{-1}$

Maximal mixing

LEP 2000

Trevor Vic
The ATLAS Experiment

Trigger and Data Acquisition System:

• Level-1 is hardware, Level-2 confined to “Regions of Interest”, Event Filter has the ability to access the entire event

High-Level Trigger

Interaction rate
~1 GHz
Bunch crossing rate 40 MHz
LEVEL 1 TRIGGER
< 75 (100) kHz
< 10 μs
Regions of Interest

LEVEL 2 TRIGGER
~ 1 kHz
~10 ms

EVENT FILTER
~ 100 Hz
~1 s

Event builder

CALO MUON TRACKING
Pipeline memories
Derandomizers
Readout drivers (RODs)
Readout buffers (ROBs)

Full-event buffers and processor sub-farms

Data recording
~100 MB/s

Average Event Size ~2 MB
~1 PB/year (petabyte = 10^{15} bytes!)
ATLAS Data-taking Chain
First test of end-to-end data-taking chain took place in September 2007

FLOW OF DATA FROM CERN TIER 0 TO TIER 1 SITES ALL OVER THE WORLD.

For data processing and analysis, the GRID is an absolute necessity.
The Large Hadron Collider

Housed in the former LEP tunnel

- Dipole field at 7 TeV is 8.33 T
- ~350 MJ per beam!
- Ultimately ~2800 bunches
- Vacuum 10^{-13} atm (~6500 m^3 pumped)
- 1232 Dipoles (operate at 1.9 K)
- 858 Quadrupoles
- Typical store lasts ~10 hours
- Can also be used for ion running (Pb)
- Final price tag estimated at 4G EUR
Expected LHC Event Rates

ATLAS with LHC at $\mathcal{L} = 10^{33}$ cm$^{-2}$ s$^{-1}$

<table>
<thead>
<tr>
<th>Process</th>
<th>Events / s</th>
<th>Events in 10 fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>W\rightarrowev</td>
<td>15</td>
<td>10^8</td>
</tr>
<tr>
<td>Z\rightarrowee</td>
<td>1.5</td>
<td>10^7</td>
</tr>
<tr>
<td>ttbar</td>
<td>1</td>
<td>10^9</td>
</tr>
<tr>
<td>bbbar</td>
<td>10^6</td>
<td>10^{12}-10^{13}</td>
</tr>
<tr>
<td>H (m=130)</td>
<td>0.02</td>
<td>10^5</td>
</tr>
</tbody>
</table>
VBF $H \rightarrow \tau\tau$

Note: All cross-sections are shown in fb

<table>
<thead>
<tr>
<th>Decay modes</th>
<th>TAUOLA-CLEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau \rightarrow e\nu_e \nu_\tau$</td>
<td>17.8 %</td>
</tr>
<tr>
<td>$\tau \rightarrow \mu\nu_\mu \nu_\tau$</td>
<td>17.4 %</td>
</tr>
<tr>
<td>$\tau \rightarrow h^\pm neutr.\nu_\tau$</td>
<td>49.5 %</td>
</tr>
<tr>
<td>$\tau \rightarrow \pi^\pm \nu_\tau$</td>
<td>11.1 %</td>
</tr>
<tr>
<td>$\tau \rightarrow \pi^0\pi^\pm \nu_\tau$</td>
<td>25.4 %</td>
</tr>
<tr>
<td>$\tau \rightarrow \pi^0\pi^0\pi^\pm \nu_\tau$</td>
<td>9.19 %</td>
</tr>
<tr>
<td>$\tau \rightarrow \pi^0\pi^0\pi^0\pi^\pm \nu_\tau$</td>
<td>1.08 %</td>
</tr>
<tr>
<td>$\tau \rightarrow K^\pm neutr.\nu_\tau$</td>
<td>1.56 %</td>
</tr>
<tr>
<td>$\tau \rightarrow h^\pm h^\pm h^\pm neutr.\nu_\tau$</td>
<td>14.57 %</td>
</tr>
<tr>
<td>$\tau \rightarrow \pi^\pm \pi^\pm \pi^\pm \nu_\tau$</td>
<td>8.98 %</td>
</tr>
<tr>
<td>$\tau \rightarrow \pi^0\pi^\pm \pi^\pm \nu_\tau$</td>
<td>4.30 %</td>
</tr>
<tr>
<td>$\tau \rightarrow \pi^0\pi^0\pi^\pm \pi^\pm \nu_\tau$</td>
<td>0.50 %</td>
</tr>
<tr>
<td>$\tau \rightarrow \pi^0\pi^0\pi^0\pi^\pm \nu_\tau$</td>
<td>0.11 %</td>
</tr>
<tr>
<td>$\tau \rightarrow K^\pm X^\pm \nu_\tau$</td>
<td>0.90 %</td>
</tr>
<tr>
<td>$\tau \rightarrow (\pi^0)\pi^\pm \pi^\pm \pi^\pm \pi^\pm \nu_\tau$</td>
<td>0.10 %</td>
</tr>
<tr>
<td>other modes with K</td>
<td>1.30 %</td>
</tr>
<tr>
<td>others</td>
<td>0.03 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>signal (fb)</th>
<th>$t\bar{t} + jets$</th>
<th>background (fb)</th>
<th>$\gamma^*/Z + jets$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>VV</td>
<td>gg</td>
<td>EW</td>
<td>QCD</td>
<td>EW</td>
</tr>
<tr>
<td>Lepton acceptance</td>
<td>5.55</td>
<td>2014</td>
<td>18.2</td>
<td>669.8</td>
</tr>
<tr>
<td>+ Forward Tagging</td>
<td>1.31</td>
<td>42.0</td>
<td>9.50</td>
<td>0.38</td>
</tr>
<tr>
<td>+ P_T^{miss}</td>
<td>0.85</td>
<td>29.2</td>
<td>7.38</td>
<td>0.21</td>
</tr>
<tr>
<td>+ Jet mass</td>
<td>0.76</td>
<td>20.9</td>
<td>7.36</td>
<td>0.11</td>
</tr>
<tr>
<td>+ Jet veto</td>
<td>0.55</td>
<td>2.70</td>
<td>5.74</td>
<td>0.05</td>
</tr>
<tr>
<td>+ Angular cuts</td>
<td>0.40</td>
<td>0.74</td>
<td>1.20</td>
<td>0.04</td>
</tr>
<tr>
<td>+ Tau reconstruction</td>
<td>0.37</td>
<td>0.12</td>
<td>0.28</td>
<td>0.001</td>
</tr>
<tr>
<td>+ Mass window</td>
<td>0.27</td>
<td>0.01</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>$H \rightarrow \tau\tau \rightarrow e\mu$</td>
<td>0.27</td>
<td>0.01</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>$H \rightarrow \tau\tau \rightarrow e\mu$</td>
<td>0.13</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>$H \rightarrow \tau\tau \rightarrow \mu\mu$</td>
<td>0.14</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Constrained MSSM

- O. Buchmueller et al., arXiv:0707.3447v2 [hep-ph]
- CMSSM: $M_h = 110 \pm 3 \text{ (theo.) GeV}$
- Includes CDM, flavor physics and a_μ experimental data

\[
\chi^2 / \text{ndf} = 17.34 / 14
\]
Central Jet Veto and Pile-up

Figure 7: (a) Central Jet Veto performance in the presence of varying levels of pileup for signal and background samples. (b) Performance of the b-jet tagging as a function of the forward jet p_T in the events, where the tt processes is analyzed.
Impact Parameter

Displaced vertices present in Zbb and $t\bar{t}$

Impact Parameter Significance $\equiv d_0/\sigma_{d_0}$

Transverse impact parameter resolution
$\sim 15 \, \mu m$ for $P_T = 20$ GeV

Transverse primary vertex spread
$\sim 15 \, \mu m$, taken into account

Isolation + Impact Parameter Criteria
$O(10^2)$ Rejection for Zbb
$O(10^3)$ Rejection for $t\bar{t}$
for signal efficiency $O(80\%)$

Effect of pile-up on signal significance $\leq 5\%$
Mass

Favoured mass of SM Higgs

$113.5 < m_H < 212$ GeV

In this range m_H can be measured to 0.1% using $\gamma\gamma$ and 4ℓ channels

Energy scale can be calibrated to 0.1% using $Z\rightarrow e^+e^-$ and $Z\rightarrow \mu^+\mu^-$
Higgs Properties: Width

- **precise measurement of width**
 - $qq\rightarrow qqh, h\rightarrow 2\gamma, WW^{(*)}, 2\tau$ together
 - with $gg\rightarrow WW^{(*)}$ allows indirect measurement of Higgs width

D. Zeppenfeld, R. Kinnunen, A. Nikitenko

- **observation of other Higgs channels:**
 - Wh with $h\rightarrow bb, h\rightarrow \gamma\gamma$
 - tth with $h\rightarrow \gamma\gamma, WW$
 - qqh, with $h\rightarrow \mu\mu$ (?)

- **self couplings;** $h\rightarrow hh$ (?)

Graphs:
- **Indirect measurement**
 - $\frac{\Delta\Gamma_H}{\Gamma_H}$ vs M_{H^*}, GeV
 - ATLAS+CMS, 200 fb$^{-1}$

- **Direct measurement**
 - $\frac{\Delta\Gamma_H}{\Gamma_H}$ vs m_H (GeV)
 - ATLAS, 300 fb$^{-1}$
Higgs Properties: Cross-sections

10% of σ in intermediate mass region comes from WW fusion
Identified by requiring forward tagging jets and no additional central jets

Errors
Statistical: 5 – 20%
$\gamma\gamma$ and 4ℓ well understood
Modes involving fwd jets more difficult to estimate

Corrected σ compared with perturbative QCD calculations
Known to NLO for all and NNLO for gg\(\rightarrow\)H processes
Higgs Properties: Couplings and BRs

Use various Higgs production and decay modes
In ratios luminosity uncertainty largely cancels
Assuming 300 fb-1

\[
\frac{\sigma \cdot B(t\bar{t}H + WH \rightarrow \gamma\gamma)}{\sigma \cdot B(t\bar{t}H + WH \rightarrow b\bar{b})} \Rightarrow \frac{BR(H \rightarrow \gamma\gamma)}{BR(H \rightarrow b\bar{b})}
\]

\[
\frac{\sigma \cdot B(H \rightarrow \gamma\gamma)}{\sigma \cdot B(H \rightarrow ZZ^*)} \Rightarrow \frac{BR(H \rightarrow \gamma\gamma)}{BR(H \rightarrow ZZ^*)}
\]

\[
\frac{\sigma \cdot B(t\bar{t}H \rightarrow \gamma\gamma / b\bar{b})}{\sigma \cdot B(WH \rightarrow \gamma\gamma / b\bar{b})} \Rightarrow \frac{g_{Ht\bar{t}}^2}{g_{HWW}^2}
\]

\[
\frac{\sigma \cdot B(H \rightarrow WW^* / W)}{\sigma \cdot B(H \rightarrow ZZ^* / Z)} \Rightarrow \frac{g_{HWW}^2}{g_{HZZ}^2}
\]
Higgs Properties: Branching Ratios

BR cannot be measured directly at the LHC
But possible to infer ratios of couplings from measured rates

<table>
<thead>
<tr>
<th>Measure</th>
<th>Error</th>
<th>M_H range</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(H \to \gamma\gamma) / B(H \to b\bar{b})$</td>
<td>30%</td>
<td>80–120</td>
</tr>
<tr>
<td>$B(H \to \gamma\gamma) / B(H \to ZZ^*)$</td>
<td>15%</td>
<td>125–155</td>
</tr>
<tr>
<td>$\frac{\sigma(t\bar{t}H)}{\sigma(WH)}$</td>
<td>25%</td>
<td>80–130</td>
</tr>
<tr>
<td>$B(H \to WW^{()}) / B(H \to ZZ^{()})$</td>
<td>30%</td>
<td>160–180</td>
</tr>
</tbody>
</table>
Azimuthal angle ϕ between decay planes in the rest frame of Higgs

$$F(\phi) = 1 + \alpha \cos(\phi) + \beta \cos(2\phi)$$

Polar angle θ between lepton and the Z momentum in Z rest frame

$$G(\theta) = L \sin^2(\theta) + T(1+\cos^2(\theta)), \quad R=(L-T)/(L+T)$$

M_{Z^*} distribution for $M_H < 2M_Z$, $d\Gamma_H/dM_{Z^*} \sim \beta^n$ near threshold (n=1 in SM)

$$\beta^2=[1-(M_Z+M_{Z^*})^2/M_H^2][1-(M_Z-M_{Z^*})^2/M_H^2]$$

Recent ATLAS fast simulation study on sensitivity to $F(\phi)$ and $G(\theta)$ for exclusion of $0^-, 1^+, 1^-$ for $M_H > 2M_Z$: SN-ATLAS-2003-025