Evidence for a Near-Threshold Structure in the \(J/\psi \phi \) channel from \(B^+ \to J/\psi \phi K^+ \)

Decays at CDF

Jane M. Nachtman for the CDF Collaboration

Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA

Evidence for a new particle in the \(J/\psi \phi \) mass spectrum is reported here. The new structure was found in 2.7 fb\(^{-1}\) of pp collision data collected with the CDF detector at Fermilab’s Tevatron accelerator at \(\sqrt{s} = 1960 \) GeV. The new state, \(Y(4140) \), has a mass of 4143.0 MeV/c\(^2\) and a width of 11.7 MeV/c\(^2\), with a statistical significance of at least 3.8 \(\sigma \).

Introduction

In recent years, several unusual and interesting charmonium-like mesons have been observed at BABAR, BELLE, CDF and D0\(^2,3,4,5\). The unusual properties of the X(3872), Y(3940), and Y(4260) mesons have led to speculations of exotic mesons such as hybrids or four-quark states.

These hints of exotic mesons have prompted searches for particles that could somehow be related. One such likely channel is the decay to \(J/\psi \phi \), for several reasons. The \(J/\psi \phi \) final state has positive C-parity and two \(J^{PC} = 1^{--} \) vector mesons (VV); the X(3872) and Y(3930) decay to VV states. The threshold for a particle decaying to \(J/\psi \phi \) is 4.116 GeV; the Y(3940) was observed near the \(J/\psi \omega \) threshold. Finally, a typical charmonium meson with a mass above 4.116 GeV/c\(^2\) has a very small predicted branching ratio to this channel; reconstructing an unexpected number would indicate something new.

From an experimental point of view, the \(J/\psi \phi \) channel is possible to reconstruct in a straightforward manner. To reduce combinatorial background the \(J/\psi \phi \) can be isolated by reconstructing the \(B^+ \) (charge conjugation is implied throughout) in the \(B^+ \to J/\psi \phi K^+ \) channel. Since b hadrons are copiously produced at the Tevatron, even rare processes can now be reconstructed in the large datasets available to CDF and D0; this CDF analysis searches 2.7 fb\(^{-1}\) of data, and nearly 5 fb\(^{-1}\) has been written to tape since the start of Run II. The b hadrons produced at the Tevatron are boosted, allowing near-threshold structure searches with a smooth acceptance. The CDF detector has excellent mass and vertex resolution, and analyses can take advantage of well-developed particle identification (PID) techniques. The CDF detector has been well described elsewhere\(^6\), and will not be discussed in detail here.

Analysis

The analysis strategy begins with reconstructing the \(B^+ \) in the \(B^+ \to J/\psi \phi K^+ \) decay channel, where the \(J/\psi \) decays to \(\mu^+ \mu^- \) and the \(\phi \) decays to \(K^+K^- \). Once this channel is isolated, the \(J/\psi \phi \) mass spectrum can be analyzed. In order to justify the choice of selection criteria, control channels of \(B_S \to J/\psi \phi \) (3000 events) and \(B^+ \to J/\psi K^+ \) (50,000 events) are selected.
Figure 1: The B^+ candidate mass spectrum before the L_{xy} and kaon LLR cuts are applied.

Figure 2: The B^+ candidate mass spectrum after all selection criteria is applied.

The selection of the B^+ sample begins with the CDF dimuon trigger dataset, from which the J/ψ is reconstructed using typical CDF selection criteria. Two kaon candidates whose invariant mass falls within a mass window defined by the ϕ mass and resolution are added, as well as an additional kaon to form the invariant mass of the five particles. The resulting B^+ candidate mass spectrum is shown in Figure 1. Two more selection criteria are added at this point. The vertex separation, L_{xy}, is the separation between the primary vertex and the secondary vertex formed by the reconstructed decay products of the candidate B^+. The L_{xy} must be greater than 500 μm in this analysis. The CDF PID for kaons uses a log-likelihood ratio (LLR) to discriminate between kaons and pions. In this analysis, the kaon LLR must be greater than 0.2. The mass spectrum of the B^+ candidates is shown in Figure 2.

A phase-space Monte Carlo simulation was used to verify that no additional structures would be expected in the B^+ candidate mass spectrum of this analysis. The possibility of reflections was also considered; the decay $B_S \rightarrow \psi(2S)$ with $\psi(2S) \rightarrow J/\psi\pi^+\pi^-$ could be reconstructed in the B^+ mass window if one of the pions were misidentified as a kaon. This possible background was eliminated with a cut on the mass of the search window.

Additionally, a check of the ϕ mass spectrum was made to ensure that no component due to f_0 or K^+K^- phase space was present. Looking at the B^+ candidate sample at the ϕ candidate
mass with a relaxed mass window, and subtracting the B^+ sidebands, yields the mass spectrum shown in Figure 3. Using a P-wave relativistic Breit-Wigner to fit the data yields a χ^2 probability of 28%; there is little to no contamination of the ϕ sample.

Next, a search of the $J/\psi \phi$ mass spectrum is performed, and an enhancement at the threshold is present in the data, as shown in Figure 4, which shows the mass as ΔM, or the difference between the mass of the $\mu^+\mu^-K^+K^-\tau$ and the mass of the $\mu^+\mu^-$. The data is fit with a signal hypothesis of an S-wave relativistic Breit-Wigner and a background hypothesis of three-body phase space, returning a signal yield of 14 ± 5, a width of $11.7 \pm 8.3 -5.0$ (stat) and a ΔM of 1046.3 ± 2.9 (stat) MeV/c2.

A log-likelihood ratio (-2ln(L_0/L_{max})) is used to estimate the significance of the structure, where L_0 and L_{max} are the likelihood values for the null hypothesis fit and the signal hypothesis fit. The significance of the structure in the $J/\psi \phi$ mass is 5.3σ if there were a priori predictions for mass and width of the new structure; however, in the absence of predictions the significance is found using a toy Monte Carlo technique to estimate the probability that the structure is due to a background fluctuation. The ΔM spectrum is modeled as a three-body phase space
decay. For each trial, the most significant fluctuation in the toy events is found anywhere in ΔM between 1.02 and 1.56 GeV/c², with a width between 1.7 MeV/c² (taken from resolution) and 120 MeV/c² (ten times the observed width). Then, the number of times that a fluctuation with a significance greater or equal to that found in the data is observed in the toy trials is counted, and a p-value is calculated. Using this method the significance drops from 5.3 σ to 4.3 σ. A further check is to vary the background model; using phase space and a flat background for non-B background yields a significance of 3.8 σ.

Conclusion

Evidence for a new structure in the J/ψφ mass spectrum has been found in 2.7 fb⁻¹ of data collected with the CDF detector at Fermilab. The signal yield is 14±5 events, with a width of 11.7 +8.3 -5.0 (statistical) ± 3.7 (systematic error) and a mass difference of 1046.3±2.9 (statistical) ± 1.2 (systematic error) MeV/c², giving a mass of 4143.0 MeV/c². The significance of this signal is 4.3 σ after taking the absence of a prediction for the mass and width into account. The width of this structure indicates that a strong decay is likely. The new structure is tentatively named the Y(4140).

References

2. S.-K. Choi et al. (Belle Collaboration),
3. S.-K. Choi et al. (Belle Collaboration),