ALICE Commissioning: Getting ready for Physics

Christian Lippmann, CERN
for the ALICE Collaboration

Moriond QCD and High Energy Interactions
March 14th - March 21st 2009
Outline

• Introduction to ALICE
• ALICE Commissioning in 2007-09.
• Status and some selected results:
 1) ITS,
 2) TPC,
 3) ACORDE,
 4) ‘Outer’ Central Detectors: TRD, TOF, HMPID, PHOS, EMCAL,
 5) Muon Spectrometer,
 6) ‘Forward Detectors’: FMD, T0, V0, ZDC, PMD.
• Status of Trigger, HLT, DCS, DAQ.
• Summary & Outlook.
ALICE is the dedicated heavy ion experiment at LHC:

- Study Pb-Pb collisions at 5.5 TeV per nucleon pair.
- Study the physics of strongly interacting matter at extreme energy densities (formation of quark-gluon plasma).
- Carry out detailed studies of the hadrons, electrons, muons and photons produced in the collisions.
- High multiplicities ⇒ high granularity;
- low momenta ⇒ low material budget.
- Chose TPC as main tracking detector (slow as compared to other LHC experiments).

ALICE will also study p-p collisions at 14 (10) TeV:

- For comparison with Pb-Pb collisions and
- in physics areas where Alice complements the other LHC experiments.
Size: 16 x 26 meters
Weight: 10,000 tons
Detectors: 18
ALICE commissioning in 2007-09

1st global run
10-21 Dec

2nd global run
4 Feb-9 Mar

3rd global run
5 May – 20 Oct

First particles from machine
15 Jun

Injection tests
8 Aug, 24 Aug

1st Circulating beam
10 Sep

Installation & Commissioning

24/7 operation

Installation & Upgrade
1) **ITS: Inner Tracking System**

- 3 different silicon detector technologies (2 layers each):

<table>
<thead>
<tr>
<th>Detector</th>
<th>Technology</th>
<th>Acceptance ((\eta, \phi))</th>
<th>Radial position ((m))</th>
<th>N. of channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPD</td>
<td>Pixel</td>
<td>(\pm 2 \ (\pm 1.4), 2\pi)</td>
<td>0.039, 0.076</td>
<td>9.8 M</td>
</tr>
<tr>
<td>SDD</td>
<td>Drift</td>
<td>(\pm 0.9, 2\pi)</td>
<td>0.15, 0.239</td>
<td>133000</td>
</tr>
<tr>
<td>SSD</td>
<td>Strip</td>
<td>(\pm 0.97, 2\pi)</td>
<td>0.38, 0.43</td>
<td>2.6 M</td>
</tr>
</tbody>
</table>

- **Fully installed and commissioned.**

- 'Pixel trigger' :
 - Fast-OR of 1200 SPD chips; available for Level 0;
 - Different programmable algorithms: High multiplicity, minimum-bias, cosmics, ...
 - ALICE is the only LHC experiment including the vertex detector in the first trigger decision from startup.

- **Operational.**
Lowering the ITS into the Cavern
(March 2007)
ITS Alignment (1)

Silicon Pixel Detector (SPD):
- ~10M channels
- 240 sensitive vol. (60 ladders)

Silicon Drift Detector (SDD):
- ~133k channels
- 260 sensitive vol. (36 ladders)

Silicon Strip Detector (SSD):
- ~2.6M channels
- 1698 sensitive vol. (72 ladders)

ITS total: 2.2k alignable sensitive volumes → 13k degrees of freedom

- Alignment using tracks and Millepede program in a hierarchical approach
- ~50k cosmic µ for alignment collected since end of May, using Pixel trigger
ITS Alignment (2)

Preliminary results for SPD (Pixels):

- Track-to-track (top vs bottom) distance in transv. plane

 \[\sigma = 55 \mu m \] (vs 40 \(\mu m \) in simul. without misalignment)

- Track-to-“extra clusters” distance in transv. plane

 \[\sigma = 21 \mu m \] (vs 15 \(\mu m \) in simul. without misalignment)

- These results indicate a residual misalignment of < 10 \(\mu m \), after realignment with cosmics.
- This is to be compared to a detector position resolution of 12 \(\mu m \) in \(r_\phi \).
• Event from very first injection tests in August 2008.
• Self-triggering with the Pixel Trigger.
• In general ITS, V0 and FMD (and often Muon) were on during injection tests.
First Interaction in ALICE

- Collision of beam-halo particle with SPD.
2) **TPC: Time Projection Chamber**

- The largest TPC ever;
- Optimized for \(dN/d\eta \approx 8000 \);
- \(L=5 \text{ m}, \ \phi = 5 \text{ m}, \ 88 \text{ m}^3 \);
- Material (\(\eta=0 \)): 3\% \(X_0 \);
- Drift gas: Ne/CO\(_2\)/N\(_2\) (86/9.5/4.5\%) + \sim 1 \text{ppm} \ O_2 ;
- Drift time: 92 \ \mu s;
- \sim 570 \ 000 \ \text{pads} \
 (\Rightarrow \sim 570 \ \text{Mio pixels}),
- Highly integrated digital electronics (ALTRO chip);
- Laser calibration system;
- **Installed and commissioned.**
Installation of the ALICE TPC

- Field Cage Assembly: 2002-04
- Readout Chamber Installation: 2005
- Electronics Installation: 2006
- Installation in cavern: 2007
- Commissioning/Calibration: 2007-09
Moving the TPC over the ITS
(September 2007)
TPC Calibration

- TPC was running continuously May-October 2008.
- 60 million events (Cosmic, krypton and laser) recorded.
- First round of calibrations completed.

Transverse momentum resolution, $B=0.5 \ T$

- Resolution at 10 GeV:
 - Measured: 6.0%
 - Design: 4.5%

Particle identification via dE/dx

- Resolution:
 - Measured: 5.7%
 - Design: 5.5%

Performance close to design value, TPC ready for collisions
3) ACORDE: Alice COsmic Ray Experiment

- Provides cosmic ray trigger.
- 60 modules with two plastic scintillator paddles with $190 \times 19.5 \text{ cm}^2$ effective area.
- Cosmic μ ($E \geq 10 \text{ GeV}$) reach ACORDE at $\leq \sim 5\text{Hz/m}^2$.
- Multi-μ events at $\leq 0.1 \text{ Hz/m}^2$.
- Operational.
4) ‘Outer’ Central Detectors (1)

- **TRD**: Transition Radiation Detector.
 - Drift chambers filled with Xe, CO₂; ~1 180 000 pads;
 - $|\eta|<0.9$, $\Delta\varphi=2\pi$, $R\geq 295\text{cm}$;
 - *Electron ID* for $1<p<10$ GeV/c; *trigger* on high momentum particles.
 - 20% now installed & commissioned.
 Up to 45% for 2009 run.

- **TOF**: Time Of Flight detector.
 - MRPCs (a revolution in TOF PID!); ~160 000 pads;
 - System resolution: <100 ps;
 - $|\eta|<0.9$, $\Delta\varphi=2\pi$, $R\geq 370\text{cm}$;
 - *Particle ID* (π/K up to 2.5 GeV/c, p/K up to 5 GeV/c), *timing and triggering*.
 - Fully installed & commissioned.
4) ‘Outer’ Central Detectors (2)

- **HMPID**: High Momentum Particle ID.
 - Proximity focused RICH, 7 modules, ~16 100 pads;
 - Acceptance: \(|\eta|<0.6; \Delta\phi=58\text{deg}; R\geq450\text{cm};\)
 - *Particle ID* (\(\pi^\pm/K^\pm\) for 1<\(p<3\) GeV/c, p for 2<\(p<5\) GeV/c).
 - Fully installed and commissioned.

- **PHOS**: PHOton Spectrometer.
 - \(\text{PbO}_4\text{W}-\) crystal calorimeter, 5 modules; ~18 000 crystals; APD read out;
 - Acceptance: \(|\eta|<0.12; \Delta\phi=100\text{deg.}; R\geq460\text{cm};\)
 - *Particle ID* (\(\gamma,\pi^0,\eta\)) up to 10 GeV/c, possibly higher momenta; Level 0 *trigger*;
 - Will be partially installed for 2009 Run.
4) ‘Outer’ Central Detectors (3)

- **EMCAL**: ElectroMagnetic CALorimeter.
 - Pb-Scintillators; 12 modules; ~13,000 projective towers in ‘Shashlik’ geometry; APD read out.
 - Acceptance: $|\eta|<0.7$; $\Delta\phi=107\text{ deg.}; R \geq 430\text{ cm}$;
 - Project approved in December 2007. 8% to be installed in March 2009. Possibly 25% for 2009 Run.
Planned Status for Central Detectors for 2009 Run
5) Muon Spectrometer

- Fully installed & commissioned.

• Acceptance on single μ:
 - $p > 4$GeV/c;
 - $-0.4 < \eta < -2.5$.

• Tracking:
 - 5 tracking stations; two planes each.
 - Cathode pad chambers; 60μm space resolution.

• Triggering:
 - 2 Trigger stations; two planes each.
 - RPC technology; avalanche or limited streamer mode.
Partial view of Muon chambers
A Rare Horizontal Particle
6) ‘Forward Detectors’ (1)

- **FMD**: Forward Multiplicity Detector
 - 3 planes of Si-pad detectors;
 - *Charged particle multiplicities and elliptic flow*;
 - Acceptance: $-3.4<\eta<-1.7; 1.7<\eta<5.03$.
 - Fully installed for 2009 Run.

- **T0**:
 - 2 arrays of 12 PMTs with quartz radiators;
 - *Time reference* for TOF (30 ps resolution) and *vertex measurement*.
 - Fully installed for 2009 Run.

- **V0**:
 - 2 arrays of 32 scintillator tiles (600ps resolution);
 - Level 0 *centrality trigger & luminosity monitor, beam-gas rejection*.
 - Fully installed for 2009 Run.
6) ‘Forward Detectors’ (2)

- **ZDC**: Zero Degree Calorimeter.
 - 2 neutron and 2 proton calorimeters at +/-116 m;
 - *Measure spectators*;
 - *Fully installed for 2009 Run*.

- **PMD**: Photon Multiplicity Detector.
 - Pre-shower detector;
 ~220 000 channels;
 - *Measure photon multiplicities*;
 - Acceptance: 2.3<\(\eta<3.7\).
 - *Fully installed for 2009 Run*.
Trigger, DAQ, DCS, HLT

• **CTP**: **C**entral **T**rigger **P**rocessor.
 • Hierarchy of three levels (L0, L1, L2).
 • Operational.

• **DAQ**: **D**ata **A**c**Q**uisition.
 • Data rate adequate for p-p collisions: Up to 400 MB/s sustained, 1.3GB/s for short periods.
 • 1.2 GB/s sustained data rate planned for LHC luminosity increase.
 • 2.5 PB/year.
 • Operational.

• **HLT**: **H**igh-**L**evel **T**rigger.
 • Currently 1,000 processors; scalable to 20,000.
 • Data pre-processing and compression; trigger decisions.
 • Operational.

• **DCS**: **D**etector **C**ontrol **S**ystem.
 • Operational.
• ALICE is the general purpose *Heavy ion experiment* at LHC.
• Now reality after 15 years of planning and construction.
• At start-up ALICE will have
 • *full hadron and muon capabilities*.
 • *partial electron and photon capabilities*.
• 3 commissioning runs (calibration data taking) in 2007/08.
• *Current shutdown is used for repairs, upgrades and further installations*.
• Next commissioning run scheduled for summer 2009 until first beams.
• ALICE will be ready for taking first p-p collisions and we eagerly await Pb-Pb collisions at the end of the upcoming run!
Backup slides
ALICE offers:

- Particle ID for $100 \text{ MeV}/c < p < 100 \text{ GeV}/c$;
- Precision tracking for $100 \text{ MeV}/c < p < 100 \text{ GeV}/c$;
- Excellent determination of secondary vertices;
- Low material thickness;
- Low magnetic field;
- Measurement of hadrons, leptons and photons at mid-rapidity and
- muons at forward rapidity.
Particle ID in ALICE

- **Stable hadrons** (π, K, p):
 - dE/dx in silicon (ITS) and gas (TPC) + Time-of-Flight (TOF) + Cerenkov (HMPID)
- **Leptons** (e, μ):
 - Transition radiation (TRD), Muon spectrometer
- **Photons**, η, π^0
 - E.m calorimeters (PHOS, EMCAL)
- **Decay topology** (K^0, K^+, K^-, Λ, D^+, ..), secondary vertices (c, b)

Alice uses ~ all known techniques!

PID
from ~100 MeV
to above 50 GeV
- ^{83}Kr isotopes released into the gas.
- Relative resolution of main peak: \sim5%.
- Pad to pad calibration.
Temperature homogeneity in TPC

Requirement: $\sigma < 0.1$ K

Achieved by actively stabilizing 50 cooling loops using information from 500 temperature sensors (36 inside gas volume).

Further improvements down to 80 mK in progress.

$\sigma = 99$ mK
Pixel Trigger (1)

- Pixel chip prompt fast-OR.
 - Active if at least one pixel hit in the chip matrix.
 - 10 chips each per optical link, transmitted at 10MHz.
 - Different programmable algorithms: High multiplicity, minimum-bias, cosmics, ...
Pixel Trigger (2)

To DAQ

Optical splitters

Fast-OR extraction

Processing

Pixel Trigger electronics

120 G-Link

1200 bits @ 10 MHz

350 ns

200 ns

225 ns

25 ns

800 ns
ITS-TPC Alignment

Cosmic muon in TPC and ITS
ALICE Commissioning in 2007/08: Data taking activity

Cumulated amount of data readout from detectors

~350 TB recorded to tape in total

Global runs