Recent Quarkonia results by PHENIX

Disclaimer: this is not a review of all the results

Zaida Conesa del Valle

Laboratoire Leprince-Ringuet

Rencontres de Moriond, March 2009
The historical introduction, Quarkonia as QGP probes

- **Goal:** Study QCD matter under extreme conditions (QGP)
- **1986, Matsui Satz**
 - **Dissociation in a QGP**
 - Example: by color screening, based on IQCD calculations that predict sequential states dissociation

<table>
<thead>
<tr>
<th></th>
<th>$J/\psi(1S)$</th>
<th>$\chi_c(1P)$</th>
<th>$\psi'(2S)$</th>
<th>$\Upsilon(1S)$</th>
<th>$\chi_c(1P)$</th>
<th>$\Upsilon'(2S)$</th>
<th>$\chi_c(2P)$</th>
<th>$\Upsilon''(3S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M [GeV]</td>
<td>3.10</td>
<td>3.41</td>
<td>3.60</td>
<td>9.46</td>
<td>9.86</td>
<td>10.02</td>
<td>10.23</td>
<td>10.36</td>
</tr>
<tr>
<td>E_s [GeV]</td>
<td>0.84</td>
<td>0.20</td>
<td>0.05</td>
<td>1.10</td>
<td>0.67</td>
<td>0.54</td>
<td>0.31</td>
<td>0.20</td>
</tr>
<tr>
<td>T_d/T_c</td>
<td>2.1</td>
<td>1.16</td>
<td>1.12</td>
<td>> 4.0</td>
<td>1.76</td>
<td>1.60</td>
<td>1.19</td>
<td>1.17</td>
</tr>
</tbody>
</table>

Cartoons just for illustration

cf Friday talks

[Satz, JPG 32 R25 (2006)]
Quarkonia menu by PHENIX

- Absence of medium effects, p+p coll.
 - Production processes ($J/\psi, \psi', \Upsilon$)
 - Feed-down contributions (ψ', χ_c, B)

- Cold Nuclear environment, d+Au coll. (J/ψ)
 - Nuclear PDFs
 - Gluon saturation
 - Nuclear absorption

- Hot Nuclear environment, Au+Au coll. (J/ψ)
 - Quarkonia could be suppressed
 - Color screening
 - Gluon Saturation
 - Comovers
 - … or regenerated

Talk outline:

- J/ψ & ψ' in p+p collisions
 - Production processes, polarization, feed-down
- J/ψ ultra-peripheral Au+Au collisions
 - Production processes, shadowing
The PHENIX Experiment

\[J/\psi \rightarrow e^+ e^- , \psi' \rightarrow e^+ e^- \]
\[\chi_c \rightarrow \gamma e^+ e^- \]

- Tracking: Drift & Pad Chambers
- Electrons identified by the RICH & EmCal
- \(|\eta| < 0.35\)
- \(p_t^e > 0.2\) GeV/c
- \(\Delta\phi = 2\times90^\circ\)

\[J/\psi \rightarrow \mu^+ \mu^- , \gamma \rightarrow \mu^+ \mu^- \]

- Front absorber
- Tracking: Cathode Strip Chambers
- Trigger: Iarocci tubes
- \(1.2 < |\eta| < 2.4\)
- \(p_t^\mu > 2\) GeV/c
- \(\Delta\phi = 2\times90^\circ\)
Quarkonia production processes: \(J/\psi\) polarization, \(\psi'\) and feed-downs

p-p collisions at 200 GeV
Understanding the production mechanisms

- At RHIC the predominant process is gluon fusion

- Multiple model descriptions:
 - CEM predicts no polarization
 - COM predicts transverse polarization ($\alpha > 1$) increasing with p_t
 - Contradicted by Tevatron data
 - CSM at NNLO* seems to reproduce Υ Tevatron spectra
 - Unclear for J/ψ

- Models have difficulties to reproduce quarkonia cross-section, p_t shape, and polarization as a whole.

[CDF, PRL 99: 132001 (2007)]
J/ψ production at 200 GeV

- PHENIX measures the \(p_t \) & rapidity dependence
- PHENIX & STAR cross-sections agree and are compatible with CEM, COM

POLARIZATION IN THE HELICITY FRAME

\[
dN / d \cos \theta = A (1 + \lambda \cos^2 \theta)
\]

RESULTS, INTEGRATED OVER PT:

- **Forward rapidity:** \(\lambda = 0.05^{+0.160}_{-0.186} \)
- **Mid-rapidity:** \(\lambda = -9.6 \pm 7.2 \pm 3.9 \%

J/ψ data-theory confrontation

- CSM model including a s-channel cut fits PHENIX J/ψ p_t dependence
 - CSM at LO plus s-channel cut fits to reproduce J/ψ Tevatron
- Mid-rapidity polarization measurements seem in agreement with this model
- But it underestimates forward-rapidity polarization
- What is up?
 - Is it a matter of \(χ_\text{c} \) & \(ψ' \) feed-down contributions?
 - Are higher order contributions needed?
- \(ψ' \) polarization measurement is challenging

[PHENIX Coll. Preliminary 2008]
ψ' measurement at PHENIX

- ψ' → e⁺ e⁻ at mid-rapidity

\[B_{\psi'\rightarrow e^+e^-} = 0.88^{+0.30}_{-0.20} \, \text{(stat)} \pm 0.12 \, \text{(sys)} \, \text{nb} \]

- ψ' over J/ψ ratio
 \[\left(\frac{BR\sigma(\psi')} {BR\sigma(J/\psi)} \right) = 1.9 \pm 0.5 \pm 0.2 \% \]
 - Compatible with HERA-B and E789 measurements

[PHENIX Coll. Preliminary 2008]
Measurement of feed-down contributions

- **J/ψ from ψ’**: 8.6 ± 2.5 % via ψ’ → e e

- **J/ψ from χ_c** < 42 % with 90% C.L. via χ_c → ψ + γ

- **J/ψ from B = 4 +3_-2 %**

[PHENIX preliminary, Quark Matter 2008]
Studying J/ψ & e^+e^- photo-production

Ultra-peripheral Au-Au collisions at 200 GeV

\[b > 2R \]
Ultra-Peripheral Collisions

- Ultra-Peripheral Collisions (UPC), $b > 2R$:
 - Electromagnetic field of UR particle \approx photon flux with continuous energy
 - Possibility to study $\gamma\gamma$ & γA interactions
 - How? Via dilepton & vector meson production

- Why?
 - Test QED on a strongly interacting regime
 - Low-x (10^{-2}) gluon PDFs, QQbar propagation in Cold Nuclear Matter

\[\text{(Balz et al, P.R.L.89 012301 (2002) + private comm.)} \]
\[\text{[J.Nystrand, NPA752 (2005) 470]} \]
\[\text{[Baur et al, N.P.A729 787 (2003)]} \]
Paper released last week!

- Observed 28 e^+e^- and no like-sign pairs in $m_{ee}>2.0$ GeV/c2
- Continuum subtracted by theoretical basis (MC+detector response)

 9.9 ± 4.1 (stat) ± 1.0 (syst) J/ψ

 13.7 ± 3.7 (stat) ± 1.0 (syst) e^+e^- in $m_{ee}[2.0,2.8]$ GeV/c2

| $m_{e^+e^-}$ [GeV/c2] | $d^2\sigma/dm_{e^+e^-}dy|_{y=0}$ [\mu b/(GeV/c2)] | $d\sigma/dy|_{y=0}$ [\mu b] |
|--------------------------|---|--------------------------|
| e^+e^- continuum [2.0,2.8] | 86 ± 23 (stat) ± 16 (syst) | 76 ± 31 (stat) ± 15 (syst) |
| e^+e^- continuum [2.0,2.3] | 129 ± 47 (stat) ± 28 (syst) | 13.7 ± 3.7 (stat) ± 1.0 (syst) |
| e^+e^- continuum [2.3,2.8] | 60 ± 24 (stat) ± 14 (syst) | 9.9 ± 4.1 (stat) ± 1.0 (syst) |

Compatible with QED calculations & consistent with e-p and p-p results.

[PHENIX, arXiv: 0903.2041, submitted to PLB]
[D.d’Enterria et al, nucl-ex/0601001 (2005)]
Comparison to theoretical predictions J/ψ UPC

- Measured p_t spectra suggests both of coherent (γA) and incoherent (γN) J/ψ production
- Cross-section is consistent with different model predictions
- ... though current precision precludes any detailed conclusion on the basic ingredients: shadowing and nuclear absorption
- Rough comparison is consistent with HERA data $\sigma_{\gamma p} = A^\alpha \sigma_{\gamma A} \rightarrow \alpha \sim 1$
Summary

- **J/ψ production** has been studied (among others) in p-p collisions
 - p_t and rapidity dependence start to be defined
 - Polarization rapidity and p_t dependence are calculated
 - Results are compatible (within uncertainties) with predictions

- **ψ’ & χc** have been detected at mid-rapidity in p-p collisions
 - ψ’ p_t spectra is drawn
 - Feed-down contribution to J/ψ are computed
 - Results are in agreement with world data and theoretical calculations

- **J/ψ & e⁺e⁻** have been observed in ultra-peripheral Au-Au collisions
 - Dielectron production cross-sections is consistent with QED calculations
 - J/ψ production cross-section is compatible with different model predictions but precludes yet detailed conclusions on CNM effects

- Those measurements are crucial as a baseline, to understand the cold nuclear matter effects present in the most central heavy-ion collisions, and so to study the QGP.
Backup slides
The PHENIX Central Arm
Rencontres de Moriond, March 2009

J/ψ production at 200 GeV

- PHENIX measures the p_t & rapidity dependence
- PHENIX & STAR cross-sections agree and are compatible with CEM, COM

![Graph showing $p+p \rightarrow J/\psi$ with $|y|<0.35$, $\sqrt{s} = 200$ GeV](image)

![Graph showing $dN/d(\cos(\theta))$ for $0 < p_t < 6$ GeV](image)

What about polarization?

\[\frac{dN}{d\cos(\theta)} = A (1 + \lambda \cos^2(\theta)) \]

- Measurement in the helicity frame
- Forward rapidity results:
 - Gives zero polarization
 \[\lambda = 0.05^{+0.160}_{-0.186} \]
 - Integrated over pt

\[B_{ll} \cdot \sigma_{pp}^{J/\psi} = 178 \pm 3^{\text{stat}} \pm 53^{\text{sys}} \pm 18^{\text{norm}} \text{nb} \]

- **Note that $\lambda = \alpha$!**
J/ψ polarization at mid-rapidity

- At mid-rapidity there is a p_t dependent polarization measurement!
- Though with big uncertainties
- More interesting at high p_t, where the theoretical predictions differ

$\lambda < 0$ longitudinal

$\lambda > 0$ transverse

[M. Donadelli @ PANIC 2008]

\[p_t \in (0,5)\text{GeV/c} \rightarrow \lambda = -9.6 \pm 7.2 \text{ (stat)} \pm 3.9 \text{ (syst)} \% \]
J/ψ polarization at mid-rapidity

- Pt dependent measurement
- Big uncertainties
- More interesting at high pt
S-channel cut model

- Adding s-channel cut contributions to the typical CSM models
- Adapt model parameters to fit J/ψ Tevatron data
- Extrapolation to PHENIX measurements is in good agreement.
- Advice: J/ψ polarisation is affected by feed-down contributions

Some plots

Transverse momentum p_T (GeV/c)

J/ψ $p+p$ Cross Section vs Energy

Some plots

CDF Coll. PRL 99, 132001 (2007)
J/ψ photo-production at CDF