QCD resummations for gaugino-pair hadroproduction

Jonathan Debove
LPSC Grenoble

in collaboration with B. Fuks and M. Klasen

La Thuile, Italy
March 18, 2010
Outline

Introduction
 Minimal supersymmetric standard model
 Neutralinos and charginos

Resummation
 Fixed-order calculation
 Resummation formalisms

Numerical results
 M-distribution of gaugino pairs
 p_T-distribution of gaugino pairs

Conclusion
Minimal Supersymmetric Standard Model

Main features
- High-energy extension of the Standard Model
- Symmetry between bosons and fermions
- Each SM particle has one SUSY partner

Some advantages
- Solution to the hierarchy problem
- Gauge coupling unification
- R-parity: Lightest SUSY particle stable
 \Rightarrow dark matter candidate (can be the lightest neutralino)
Neutralinos and charginos

- Gauginos: \tilde{W}^\pm, \tilde{W}^0, \tilde{B}
- Higgsinos: \tilde{H}_2^+, \tilde{H}_2^0, \tilde{H}_1^0, \tilde{H}_1^-

- EWSB \rightarrow Mixings \rightarrow Neutralinos and charginos

\[
\begin{pmatrix}
\tilde{\chi}_0^0 \\
\tilde{\chi}_1^0 \\
\tilde{\chi}_2^0 \\
\tilde{\chi}_3^0 \\
\tilde{\chi}_4^0
\end{pmatrix}
= N
\begin{pmatrix}
-i\tilde{B}_0^0 \\
-i\tilde{W}_0^0 \\
\tilde{H}_2^0 \\
\tilde{H}_1^0
\end{pmatrix}
\]

\[
\begin{pmatrix}
\tilde{\chi}_1^- \\
\tilde{\chi}_2^-
\end{pmatrix}
= U
\begin{pmatrix}
-i\tilde{W}_-^-
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
\tilde{\chi}_1^+ \\
\tilde{\chi}_2^+
\end{pmatrix}
= V
\begin{pmatrix}
-i\tilde{W}_+^+
\end{pmatrix}
\]
Motivation for gaugino study

- Need accurate values for masses and mixings
 - Hints on SUSY-breaking mechanism
 - DM calculations strongly rely on these parameters

- Among the lightest SUSY particles in many SUSY-breaking scenarios
 ⇒ May be produced at current hadron colliders

- Can decay into the LSP and leptons
- Clean signal: leptons + large E_T
- Tevatron searches for $\tilde{\chi}_1^±\tilde{\chi}_2^0 \rightarrow l^± l^0 l^- + E_T$ [CDF(2008)], [D0(2006)]
Fixed-order calculation

- Partonic M- and p_T-distributions at $\mathcal{O}(\alpha_s)$:
 \[
 z = \frac{M^2}{\hat{s}} \\
 \frac{d\hat{\sigma}}{dM^2} = \hat{\sigma}^{(0)}(M)\delta(1 - z) + \alpha_s \hat{\sigma}^{(1)}(z, M) \\
 \frac{d\hat{\sigma}}{dM^2 dp_T^2} = \hat{\sigma}^{(0)}(M)\delta(1 - z)\delta(p_T^2) + \alpha_s \hat{\sigma}^{(1)}(z, M, p_T)
 \]

- Cancellation of IR singularities leaves terms of the form
 \[
 \alpha_s^n \left(\frac{\ln^m(1 - z)}{1 - z} \right) + \frac{\alpha_s^n}{p_T^2} \ln^m \frac{M^2}{p_T^2} \quad (m < 2n)
 \]

- Large at $z \approx 1$ or small p_T

- Convergence of the perturbative expansion is spoiled

- These contributions must be summed to all order in α_s
 \(
 \Rightarrow \text{Gain reasonable control over these terms}
 \)
Resummation formalisms

- **Threshold resummation**: [Sterman (1987)]
- **p_T-resummation**: [Collins, Soper, Sterman (1985)]

- Work in conjugate spaces:
 - Mellin transform: N variable conjugate to z
 - Fourier transform: impact parameter b conjugate to p_T
 - The large terms become large logarithms: $L \equiv \ln N$ or $\ln(bM)$

- The resummed cross section can be written in an exponential form:
 \[
 \hat{\sigma}^{(\text{res})}(M, L) = \mathcal{H}(M) \exp[\mathcal{G}(L)]
 \]

- The \mathcal{H}-coefficient contains all the non-singular terms
 \(\Rightarrow\) Can be computed perturbatively
- The Sudakov exponent \mathcal{G} contains all the large logs which are resummed in the exponential
Matching to the fixed order

- **Close** to the critical kinematical regions:
 Perturbation theory spoiled → Resummation needed

- **Far** from the critical kinematical regions:
 Perturbation theory reliable → Resummation not justified
 ⇒ Information from both calculations required

Matching procedure:
- Add both resummation and fixed-order results
- Substract the expansion in α_s of the resummed result
- No double counting of the logarithms

$$d\hat{\sigma} = d\hat{\sigma}^{(\text{res})} + d\hat{\sigma}^{(f.o)} - d\hat{\sigma}^{(\text{exp})}$$
M-distribution at the Tevatron

\[p\bar{p} \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_2^0 \text{ at } \sqrt{S} = 1.96 \text{ TeV} \]

![Graph showing M-distribution](image)

- \(M/2 \leq \mu_F = \mu_R \leq 2M \)
- NLO corrections:
 - Large and positive (20-25%)
 - Scale dependence slightly improved
- Resummation effects are important
 - Cross section slightly increased
 - Scale dependence reduced

- SPS1a': \(m_0 = 70 \text{ GeV}, m_{1/2} = 250 \text{ GeV}, A_0 = -300 \text{ GeV}, \tan \beta = 10, \mu > 0 \)
- mSUGRA RGE: SuSpect2.4
- PDF set: CTEQ6.6M / CTEQ6L1
Resummation effects at the Tevatron and the LHC

$p\bar{p}\ (\sqrt{s} = 1.96 \text{ TeV}) - \text{SPS1a'}$

$pp\ (\sqrt{s} = 7 \text{ TeV}) - \text{SPS1a'}$

$K^{\text{NLL}} = \frac{d\sigma^{\text{NLL+NLO}}}{d\sigma^{\text{NLO}}}$

- NLL contributions: positive and increase with M
- Larger at the Tevatron (5-20 %) than at the LHC (a few percent)
p_T-distribution at the LHC

- Fixed-order prediction is divergent at $p_T = 0$ GeV
 \Rightarrow Unreliable results

- Applying p_T-resummation
 \Rightarrow Get finite results

- Scale dependence improved: $12\% \rightarrow 6\% \ (p_T = 45 \text{ GeV})$

$pp \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_2^0$ at $\sqrt{S} = 10$ TeV

[JD, Fuks, Klasen (2009)]
Comparison with PYTHIA

$pp \to \tilde{\chi}_1^+ \tilde{\chi}_2^0$ at $\sqrt{S} = 10$ TeV – SPS1a’

- p_T-distribution in PYTHIA comes from parton shower
- **PYTHIA STD**: Peak at too small values of p_T
- **PYTHIA AW’**: CDF tune for V-boson production [Field (2006)]
- Correct peak but underestimate the intermediate p_T-region

[JD, Fuks, Klasen (2009)]
Conclusion

- **Neutralino/chargino pairs at hadron colliders**
 - Usual fixed-order calculations are polluted by large logarithms at the edge of the phase space ($p_T \to 0, \ z \to 1$)
 - Leading to incorrect predictions at small values of p_T
 - Need for resummation

- **p_T-resummation and Threshold resummation**
 - Up to NLL accuracy
 - Reliable results
 - Smaller dependence on the unphysical scales
 - vs PYTHIA