W Boson Production in Polarized p+p Collisions at RHIC

Justin Stevens
for the STAR Collaboration

Moriond QCD and High Energy Interactions
March 16 2010
Proton Spin Puzzle

The observed spin of the proton can be decomposed into contributions from the intrinsic quark and gluon spin and orbital angular momentum:

\[\langle S_p \rangle = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g \]

Integral of quark polarization is well measured in DIS to be only \(~30\%\), but decomposition (especially sea) is not well understood:

\[\Delta \Sigma = \int \left(\Delta u + \Delta d + \Delta s + \Delta \bar{u} + \Delta \bar{d} + \Delta \bar{s} + \cdots \right) dx \]

Being measured at RHIC (Jets, hadrons, etc.)

Polarized PDFs:

\[\Delta f(x) = f^+(x) - f^-(x) \]
Flavor Asymmetry of the Sea

- Quantitative calculation of Pauli blocking does not explain \bar{d}/\bar{u} ratio
- Non-perturbative processes may be needed in generating the sea
- E866 results are qualitatively consistent with pion cloud models, chiral quark soliton models, instanton models, etc.

Polarized PDFs from recent global fits:
- Valence u and d distributions are well determined
- Polarized flavor asymmetry $x(\Delta \bar{u} - \Delta \bar{d})$ could help differentiate models

PRL 101, 072001 (2008)
Probing the Sea Through W Production

$$u + d \rightarrow W^+ \rightarrow e^+ + \nu$$
$$\bar{u} + d \rightarrow W^- \rightarrow e^- + \bar{\nu}$$

• Detect Ws through e^+/e^- decay channels
• V-A coupling leads to perfect spin separation
 • LH quarks and RH anti-quarks
• Neutrino helicity gives preferred direction in decay

Measure parity-violating single-spin asymmetry:

$$A_L^W = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

(Helicity flip in one beam while averaging over the other)

$$A_{L^-}^W \propto -\Delta d(x_1)\bar{u}(x_2) + \Delta\bar{u}(x_1)d(x_2)$$
$$A_{L^+}^W \propto -\Delta u(x_1)\bar{d}(x_2) + \Delta\bar{d}(x_1)u(x_2)$$
RHIC: Polarized p+p Collider

• First collisions at $\sqrt{s}=500$ GeV in 2009
• Beam polarization $\sim 40\%$
Barrel EM Calorimeter ($|\eta|<1$):
Lepton Energy Veto jets

Endcap EM Calorimeter ($1<\eta<2$):
Veto jets

Time Projection Chamber ($|\eta|<1.3$):
Vertex, Charge Separation Veto jets

Pythia+Geant $p+p\rightarrow W\rightarrow e+\nu$ event @ 500 GeV
500 GeV Data Set from Run 9

W Trigger:
High Tower Hardware L0 Trigger (E_T > 7.3 GeV)
High E_T 2x2 Cluster Software L2 (E_T > 13 GeV)

Integrated Luminosity @ 500 GeV:
• **Vernier Scan** technique used to measure cross section for high tower trigger
 \[\sigma_{BHT3} = 481 \text{ nb} \pm 10 \text{ (stat.)} \pm 110 \text{ (syst.)} \]
• Scaling the number of background-subtracted high tower triggers by \(1/\sigma_{BHT3}\) yields the integrated luminosity of \(L=13.7 \text{ pb}^{-1}\)
W Algorithm: Lepton Isolation

Lepton Isolation Cuts:
- Require TPC track with $p_T > 10$ GeV
- Extrapolate track to Barrel Calorimeter
- Require highest $2x2$ cluster around pointed tower sum $E_T > 15$ GeV
- Require excess E_T in $4x4$ cluster < 5%
- Match track to $2x2$ cluster position
W Algorithm: Suppress QCD Background

Suppress jets with leading hadron
- Near side jet-cone veto

Suppress di-jets and multi-jet events
- Away side p_T sum veto
- Require an imbalance in p_T of the lepton cluster and any jets reconstructed outside the near side jet cone

Signal region

EMC Cluster $E_T / 0.7$ Cone E_T

Away side p_T sum (GeV)

Justin Stevens - Moriond QCD
e\(^+\)/e\(^-\) Charge Separation at High \(P_T\)

[Diagram showing TPC and BEMC with vertex at 200 cm of tracking.]

- Positron \(P_T = 5\) GeV
- Electron \(P_T = 5\) GeV

+/- distance \(D \sim 1/P_T\)

- \(P_T = 5\) GeV : \(D \sim 15\) cm
- \(P_T = 40\) GeV : \(D \sim 2\) cm
Background Subtraction

Background Events ($E_T > 25$ GeV)

<table>
<thead>
<tr>
<th>Process</th>
<th>W⁻ → $e^- + \bar{\nu}_e$</th>
<th>W⁺ → $e^+ + \nu_e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W \rightarrow \tau + \nu_\tau$</td>
<td>2.7 ± 0.7</td>
<td>8.4 ± 2.2</td>
</tr>
<tr>
<td>Missing Endcap</td>
<td>14 ± 4</td>
<td>13 ± 4</td>
</tr>
<tr>
<td>Normalized QCD</td>
<td>8.0$^{+20}_{-4}$</td>
<td>25$^{+36}_{-9}$</td>
</tr>
<tr>
<td>Total</td>
<td>25$^{+21}_{-7}$</td>
<td>46$^{+36}_{-11}$</td>
</tr>
</tbody>
</table>

Background Systematic

- Calculate different data driven QCD background shapes by varying p_T Balance and away side p_T cuts
- Vary normalization region ($E_T < 17$ and $E_T < 21$ GeV)
- The largest deviation in each bin gives an estimate of the systematic uncertainty
STAR Ws from Run 9

Run 9 STAR Preliminary $\sqrt{s} = 500$ GeV

$p+p \rightarrow W^- \rightarrow e^- + \bar{\nu}_e$

- electron $|n| < 1$
- W^- candidates
- Backg. est.
- Backg. subtr. W^-

Counts vs. EMC cluster E_T (GeV)

Run 9 STAR Preliminary $\sqrt{s} = 500$ GeV

$p+p \rightarrow W^+ \rightarrow e^+ + \nu_e$

- positron $|n| < 1$
- W^+ candidates
- Backg. est.
- Backg. subtr. W^+

Counts vs. EMC cluster E_T (GeV)
Monte-Carlo is full PYTHIA+GEANT simulation of $W \rightarrow e+\nu$ events at 500 GeV
W Production Cross Section at STAR

Run 9 STAR Preliminary $p+p \sqrt{s} = 500$ GeV
Kinematic acceptance: $|\eta| < 1$ and $E_T > 25$ GeV

$$\sigma(W^\pm \rightarrow e^\pm + \nu_e)$$

<table>
<thead>
<tr>
<th>$W^- \rightarrow e^- + \bar{\nu}_e$</th>
<th>$W^+ \rightarrow e^+ + \nu_e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{W}^{obs}</td>
<td>156</td>
</tr>
<tr>
<td>N_{W}^{back}</td>
<td>$25 \pm 21_{-7}^{+19}$</td>
</tr>
<tr>
<td>ϵ_{total}</td>
<td>0.56 $\pm 0.11_{-0.09}^{+0.12}$</td>
</tr>
<tr>
<td>$\int L dt (\text{pb}^{-1})$</td>
<td>13.7 ± 3.2</td>
</tr>
</tbody>
</table>

Run 9 STAR Preliminary ($p+p$ 500 GeV)

$$\sigma_{W^+\rightarrow e^+ + \nu} = 61 \pm 3 \text{ (stat.)} \pm 10 \text{ (syst.)} \pm 14 \text{ (lumi.)} \text{ pb}$$

$$\sigma_{W^-\rightarrow e^- + \bar{\nu}} = 17 \pm 2 \text{ (stat.)} \pm 3 \text{ (syst.)} \pm 4 \text{ (lumi.)} \text{ pb}$$
A_L for Ws at STAR

After spin sorting the yields, calculate longitudinal parity-violating spin asymmetry A_L:

$$A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

STAR Preliminary Run 9

$A_L(W^+) = -0.33 \pm 0.10\,(\text{stat.}) \pm 0.04\,(\text{syst.})$

$A_L(W^-) = 0.18 \pm 0.19\,(\text{stat.}) \pm 0.04\,(\text{syst.})$
Conclusions

• W boson production in polarized p+p collisions provides a new means of studying the spin-flavor asymmetries of the proton sea quark distributions

• The cross sections for W^+ and W^- measured at STAR are consistent with theoretical expectations

• The parity-violating asymmetries, A_L, were also observed and agree with theoretical predictions

• Future planned STAR measurements at mid-rapidity and forward rapidity with increased luminosity and beam polarization will provide significant constraints on the polarized sea
Backup
Example Lego Plots

BEMC E_T Distribution (GeV)

TPC p_T Distribution (GeV/c)

W event

Dijet event
Example Event Display
Data Driven Background

Iterative Normalization
- Small W signal is expected in normalization region (ET<19 GeV)
- Use linear fit to low ET side of Jacobian peak to estimate signal in normalization region

Systematic Uncertainty
- Calculate 1200 different QCD background shapes by varying awayside pT cut, ptBalance cut, and normalization region
- Take maximum extent for each bin as uncertainty
Event Rejection

Run 9 Data

- Electron candidate, cut = max 2x2
- Entries 152197
- Track $p_T > 10$ GeV
- Lepton Isolation Cut
- Near Side p_T Veto
- Away Side p_T & p_T Balance Veto

Pythia+Geant W^+ MC

- Electron candidate, cut = max 2x2
- Entries 5107

Justin Stevens - Moriond QCD
Cross Section

\[\sigma_w = \int dE_T^e \int d\eta^e \frac{d^2\sigma_{W \rightarrow ev}}{d\eta^e dE_T^e} = \frac{1}{L} \frac{1}{\varepsilon_{\text{trig}}} \frac{1}{\varepsilon_{\text{vertex}}} \frac{1}{\varepsilon_{\text{reco}}} (N_{W_{\text{obs}}} - N_{\text{back}}) \]

Kinematic acceptance: \(|\eta_e| < 1 \) and \(E_T^e > 25 \text{GeV} \)

Efficiencies Calculated from full PYTHIA + GEANT simulations

<table>
<thead>
<tr>
<th>Efficiency Component</th>
<th>(W^- \rightarrow e^- + \bar{\nu}_e)</th>
<th>(W^+ \rightarrow e^+ + \nu_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger: (\varepsilon_{\text{trig}})</td>
<td>0.86 (\pm) 0.04</td>
<td>0.88 (\pm) 0.04</td>
</tr>
<tr>
<td>Vertex: (\varepsilon_{\text{vertex}})</td>
<td>0.91 (\pm) 0.03</td>
<td>0.91 (\pm) 0.03</td>
</tr>
<tr>
<td>Reconstruction: (\varepsilon_{\text{reco}})</td>
<td>(+0.13) (\pm 0.11)</td>
<td>(+0.14) (\pm 0.11)</td>
</tr>
<tr>
<td>Total: (\varepsilon_{\text{total}})</td>
<td>0.56 (\pm 0.11) (\pm 0.09)</td>
<td>0.56 (\pm 0.12) (\pm 0.09)</td>
</tr>
</tbody>
</table>
Cross Section Uncertainties

• W Reconstruction Systematic
 – Track Reconstruction: 15-20%
 – Vertex Reconstruction: 4%
 – Energy Scale: < 1%

• Normalization/Luminosity Systematic
 – Vernier scan absolute cross section: 23%

• Background Systematic
 – Vary data driven QCD background shape and normalization region
Anti-quark Distribution Functions

\[\bar{d}(x)/\bar{u}(x) \text{ at } Q^2 = 36 \text{ GeV}^2 \]
Spin dependent x-section for longitudinal polarization

\[
\begin{align*}
\frac{N_{++}}{L_{++}} &= \sigma_0 \left[1 + A_L(P_1 + P_2) \right] + A_N(Q_1 - Q_2)\delta + A_{LL}P_1P_2 \\
\frac{N_{+-}}{L_{+-}} &= \sigma_0 \left[1 + A_L(P_1 - P_2) \right] + A_N(Q_1 + Q_2)\delta - A_{LL}P_1P_2 \\
\frac{N_{-+}}{L_{-+}} &= \sigma_0 \left[1 - A_L(P_1 - P_2) \right] - A_N(Q_1 + Q_2)\delta - A_{LL}P_1P_2 \\
\frac{N_{--}}{L_{--}} &= \sigma_0 \left[1 - A_L(P_1 + P_2) \right] - A_N(Q_1 - Q_2)\delta + A_{LL}P_1P_2
\end{align*}
\]

\(N = \# \) events and \(L = \) luminosity for each spin state

\(\delta \approx \int_{2\pi} d\phi_e \ \text{Effi}(\phi_e) \sin(\phi_e) \approx 0.02 \)

Yields integrated over \(|\eta| < 1 \)

\(\frac{N_{++}}{L_{++}} = \sigma_{++} \), etc.
Longitudinal spin asymmetries for Ws

- Four independent yields were measured. Six asymmetries were computed, of which three are independent, and one of these is a null test.

<table>
<thead>
<tr>
<th>Leading physics asymmetry</th>
<th>cross section dependence</th>
<th>raw asymmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_L (blue)</td>
<td>$(\sigma_{++} + \sigma_{+-} - \sigma_{-+} - \sigma_{--})/\text{sum4}$</td>
<td>$A_L P_1$</td>
</tr>
<tr>
<td>A_L (yellow)</td>
<td>$(\sigma_{++} + \sigma_{-+} - \sigma_{--} - \sigma_{+-})/\text{sum4}$</td>
<td>$A_L P_2$</td>
</tr>
<tr>
<td>A_L (average)</td>
<td>$(\sigma_{++} - \sigma_{--})/\text{sum4}$</td>
<td>$A_L \frac{P_1 + P_2}{2}$</td>
</tr>
<tr>
<td>A_{LL}</td>
<td>$(\sigma_{++} + \sigma_{-+} - \sigma_{--} - \sigma_{+-})/\text{sum4}$</td>
<td>$A_{LL} P_1 P_2$</td>
</tr>
<tr>
<td>$A_L(P_1 - P_2)$</td>
<td>$(\sigma_{+-} - \sigma_{--})/(\sigma_{++} + \sigma_{+-})$</td>
<td>$A_L \frac{P_1 - P_2}{1 - A_{LL} P_1 P_2}$</td>
</tr>
<tr>
<td>$A_L^* \approx A_L$</td>
<td>$(\sigma_{++} - \sigma_{--})/(\sigma_{++} + \sigma_{--})$</td>
<td>$A_L \frac{P_1 + P_2}{1 + A_{LL} P_1 P_2}$</td>
</tr>
</tbody>
</table>

Null test

Yields integrated over $|\eta|<1$

where $\text{sum4} = \sigma_{++} + \sigma_{+-} + \sigma_{-+} + \sigma_{--}$
The QCD background was estimated as described for the cross section determination. This background is assumed to be unpolarized. However, it can impact the extraction of the physics asymmetry, A_L.

$$N_{\pm} = \sigma_0 \mathcal{L}_0 \varepsilon_0 \left[1 + \beta \pm A \right]$$

where β is background contamination

$$\beta = \frac{\text{signal + backg}}{\text{signal}}$$

$$\epsilon_{\text{s}} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

$$A = \frac{\beta \epsilon_{\text{s}}}{P} \quad \text{physics asy corrected for background}$$

- Uncorrected event by event background is equivalent to beam depolarization.
- High/low limits on the background translate to an A_L scale uncertainty.
Systematic Errors for A_L

- The table below lists the systematic uncertainties for A_L.
 - No contribution assumed from wrong sign W contamination, due to Q/p_T cut.
 - No other spin observables assumed to contribute.

<table>
<thead>
<tr>
<th></th>
<th>W^+</th>
<th></th>
<th>W^-</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>0.092</td>
<td>low</td>
<td>0.092</td>
<td>CNI average polarization of both beams $(P1+P2)$</td>
</tr>
<tr>
<td>0.070</td>
<td>0.020</td>
<td>0.130</td>
<td>0.030</td>
<td>QCD unpolarized background</td>
</tr>
<tr>
<td>0.065</td>
<td>0.065</td>
<td>0.135</td>
<td>0.135</td>
<td>QCD pol. bckg. ~0: use 1/2 stat error of this test</td>
</tr>
<tr>
<td>0.004</td>
<td>0.000</td>
<td>0.004</td>
<td>0.000</td>
<td>decay of pol. within fill</td>
</tr>
<tr>
<td>0.13</td>
<td>0.11</td>
<td>0.21</td>
<td>0.17</td>
<td>total syst. in fraction of measured AL</td>
</tr>
</tbody>
</table>
W Kinematics

\[x_1 = \frac{M_W}{\sqrt{s}} e^{y_w} \]
\[x_2 = \frac{M_W}{\sqrt{s}} e^{-y_w} \]
\[y_{lep}^{lab} = y_{lep}^* + y_W \]

If \(W q_T \) is small

\[y_{lep}^* = \frac{1}{2} \ln \frac{1 + \cos \theta^*}{1 - \cos \theta^*} \]
\[p_{T,l}' = \frac{M_W}{2} \sin \theta^* \]

If \(|\text{rapidity}|\gg 0\)

\[A_L^+ (y_W >> 0) \approx \frac{\Delta u(x)}{u(x)} \]
\[A_L^- (y_W >> 0) \approx \frac{\Delta d(x)}{d(x)} \]

\[A_L^+ (y_W << 0) \approx -\frac{\Delta d(x)}{d(x)} \]
\[A_L^- (y_W << 0) \approx -\frac{\Delta u(x)}{u(x)} \]

|\(y_{lep}^{lab} - y_{lep}^* - y_W \)|

- **mid-rapidity**
- **for./back. rapidity**