Heavy Flavor Production at CMS

KEITH ULMER
UNIVERSITY OF COLORADO
Heavy flavor production

- Provides a testing ground for QCD calculations in a new energy regime
 - NLO contributions dominate at LHC
 - Large uncertainties remain due to factorization and renormalization scales

- b-jet tagging is crucial in many new physics studies, and we must understand these SM backgrounds

- Many heavy flavor production results from CMS
 - J/Ψ and Y production
 - Inclusive b production, including b\bar{b} angular correlations
 - Exclusive B⁺, B⁰, Bₛ production

New!
The CMS detector

- All silicon inner tracker with p_T resolution $\sim 1\%$ and d_0 resolution $\sim 20 \, \mu m$ for tracks in analyses presented

- Tracking efficiency $> 99\%$ for central muons

- Redundant muon system triggers and records muons with $p_T > 1-3$ GeV and $|\eta| < 2.4$
Quarkonia production

- First heavy flavor production results from CMS
 - J/Ψ and Υ double differential cross sections vs p_T and γ
 - Including lifetime fit for J/Ψ fraction from b decays

J/Ψ production: [arXiv:1011.4193](http://arxiv.org/abs/1011.4193) (accepted by EPJC)

Υ production: [arXiv:1012.5545](http://arxiv.org/abs/1012.5545) (submitted to PRD)

Complete results and more details in backup slides
Inclusive beauty production

- Use semi-leptonic decays to separate b from udscg jets
- Trigger on muon ($p_T > 3$ GeV) and require $p_T > 6$ GeV, $|\eta| < 2.1$ offline
- Jets clustered with anti-k_T ($R=0.5$) from tracks with $p_T > 300$ MeV
- Muon further from jet axis on average for heavier b decays provides discrimination power
- p_T^{rel} templates from MC (data) for b and c (udsg), with signal validated in b-enriched data
- Background templates combined in fit

$\sqrt{s}=7$ TeV
$\mathcal{L}=85$ nb$^{-1}$

b fraction from fit = 46%
Inclusive beauty cross section

- Measure visible cross section: $\mu p_T > 6$ GeV, $|\eta| < 2.1$
 \[
 \sigma(pp\rightarrow b+X\rightarrow\mu+X) = 1.32 \pm 0.01\text{(stat.)} \pm 0.30\text{(syst.)} \pm 0.15\text{(lumi.)} \ \mu b
 \]

 \[
 \sigma_{\text{MC@NLO}} = 0.95^{+0.42}_{-0.21} \ \mu b, \quad \sigma_{\text{PYTHIA}} = 1.9 \ \mu b
 \]

- Systematics limited: signal and background p_T^{rel} shapes dominate uncertainty

- Measured σ higher than MC@NLO, particularly at low p_T; lower than PYTHIA

- Pseudorapidity shape in good agreement with models

JHEP 1103 (2011) 090
Inclusive b from jet tagging

- Use secondary vertex tagging to identify b jets
 - Jets from anti-k_T algorithm using tracks and calorimeter information
 - Displaced vertices selected with ≥ 3 tracks to identify b events
 - Significantly extends the measurement in p_T: Tagging efficiency 50-60% for jet $p_T = 100$ GeV, with 0.1% contamination

- Uncertainties dominated by b-tag efficiency and jet energy scale

- Fewer b jets measured than predicted by MC@NLO at high rapidity

- Ratio of b jets/all jets described well by Pythia

CMS-PAS-BPH-10-009

bb correlations

- Use secondary vertex finding to study correlations between two B hadrons
 - Require exactly two secondary vertices, with ≥ 3 tracks, 3D flight length $\geq 5\sigma$
 - Calculate $\Delta R = \sqrt{(\Delta \phi^2 + \Delta \eta^2)}$ from directions from primary vertex to each secondary
- Correct measured momentum to true B hadron momentum with MC
- Report visible spectrum with both B’s in $|\eta| < 2.0$, $p_T > 15$ GeV
- Results shown in different ranges for the leading jet p_T

- Flavor creation expected to dominate at high ΔR, gluon splitting contributes more at low ΔR
- Normalize MC in high ΔR region
- Data shows excess at low ΔR over Pythia

arXiv:1102.3194 (accepted by JHEP)
Exclusive beauty production

- Reconstruct B hadrons in exclusive final states
 - $B^+ \to J/\Psi K^+$
 - $B^0 \to J/\Psi K_s$
 - $B_s \to J/\Psi \phi$

- Trigger on dimuon events from $J/\Psi \Rightarrow \mu^+\mu^-$

- Small branching fractions ($2-6 \times 10^{-5}$, including product branching fractions)

- High $b\bar{b}$ cross section at the LHC already allows for measurements with early data
Use 2D maximum likelihood fit to B^0 mass and lifetime to separate signal events from background.

Backgrounds from prompt J/Ψ, peaking and non-peaking B events.

Most fit shapes derived directly from data; peaking background and signal B mass from MC.

Keep candidates with $B^0 p_T > 5$ GeV and $|B^0$ rapidity$| < 2.4$.

Total yield $= 912 \pm 47$.

Efficiency of candidate reconstruction (1.5-33%) determined from data-driven and MC techniques.
Inclusive B^+ cross section

- Total $\sigma(pp \rightarrow B^+X) = 28.1 \pm 2.4$ (stat.) ± 2.0 (syst.) ± 3.1 (lumi.) μb for $p_T > 5$ GeV, $|y| < 2.4$
- Between predictions from MC@NLO ($25.5^{+9.2}_{-5.7}$ μb) and Pythia (48.1 μb)
- Use fits in bins of B^+ p_T and y to measure B^+ differential cross section

$$\frac{d\sigma(pp \rightarrow B^+X)}{dp_T^{B^+}} = \frac{n_{\text{sig}}(p_T^{B^+})}{2e(p_T^{B^+})B L \Delta p_T^{B^+}}$$

3/26/11
Keith Ulmer -- University of Colorado

11/15
Similar techniques used for B^0 and B_S
- K_s reconstructed in $\pi^+\pi^-$, and ϕ in K^+K^- final state
- New results based on the full 2010 CMS dataset with 39.6 pb$^{-1}$
- Signal yields: 809±39 for B^0, 549±32 for B_S
- Signal m_B resolution ~20 μm, ct resolution ~45 μm

B0 mass projection
$p_T > 5$ GeV, $|y| < 2.2$

B_S mass projection
$p_T > 8$ GeV, $|y| < 2.4$
B⁰ cross section results

- Total $\sigma(pp \rightarrow B^0X) = 33.2 \pm 2.5$ (stat.) ± 3.5 (syst.) μb for $p_T > 5$ GeV, $|y| < 2.2$
- Between predictions from MC@NLO ($25.2^{+9.6}_{-6.2}$ μb) and Pythia (49.1μb)
- p_T shape in reasonable agreement with the models
- Rapidity shape more flat than Pythia and MC@NLO
B_s cross section results

- Total $\sigma(pp \Rightarrow B_s X) \times BF(B_s \Rightarrow J/\Psi \phi) = 6.9 \pm 0.6$ (stat.) ± 0.5 (syst.) ± 0.3 (lumi.) nb, for $p_T > 8$ GeV, $|y| < 2.4$
 - 30% uncertainty on $B_s \Rightarrow J/\Psi \phi$ factored out of measurement
- Between predictions from MC@NLO ($4.6_{-1.7}^{+1.9}$ nb) and Pythia (9.4 nb)
- p_T shapes falls faster than MC@NLO
- Rapidity distribution flatter than either model

Data: PYTHIA (MSEL 1, CTEQ6L1, Z2 tuning) = 4.75 GeV

MC@NLO (CTEQ6M, m_{MC@NLO scale variation (0.5-2)}

CMS Preliminary $\sqrt{s}=7$ TeV, L=40pb$^{-1}$
Conclusions

- CMS has measured heavy flavor production with a wide variety of techniques
 - Quarkonia production, including fraction of J/Ψ’s from B hadrons
 - Open b production from multiple inclusive and exclusive reconstruction techniques
- Different methods are complementary with different sensitivities and different limiting uncertainties
- Wealth of new data now being used to refine theoretical models and improve MC simulation
- Many more interesting results to come…
References

- J/Ψ production: arXiv:1011.4193 (accepted by EPJC)
- Y production: arXiv:1012.5545 (submitted to PRD)
- Inclusive b from muons: JHEP 1103 (2011) 090
- Inclusive b from jets: CMS-PAS-BPH-10-009
- bb correlations: arXiv:1102.3194 (accepted by JHEP)
J/ψ production

- Reconstruct J/ψ from decays to two muons
- Cross section determined in p_T and y intervals with yields corrected for efficiency and acceptance
- Measure muon efficiency directly in data
 \[\sigma(6.5<p_T<30 \text{ GeV}, |y|<2.4) \times B(J/\psi \rightarrow \mu\mu) = 97.5 \pm 1.5 \pm 3.4 \pm 10.7 \text{ nb}, \text{ for unpolarized } J/\psi \]
 - Different polarizations shift results as much as 20%
- Prompt J/ψ production at low p_T and high rapidity exceeds predictions from models

\[B \times d^2\sigma / dp_T dy \text{ (nb/GeV/c)} \]

\[\sigma \text{ (6.5<p_T<30 GeV, } |y|<2.4) \times B(J/\psi \rightarrow \mu\mu) = 97.5 \pm 1.5 \pm 3.4 \pm 10.7 \text{ nb}, \text{ for unpolarized } J/\psi \]
Fraction of J/ψ’s from b decays

- Use 2D proper decay length to separate prompt J/ψ from non-prompt contributions from b decays

$$\sigma(pp \rightarrow bX \rightarrow J/\psi X) \times B(J/\psi \rightarrow \mu\mu) = 26.0 \pm 1.4 \pm 1.6 \pm 2.9 \text{ nb},$$

for unpolarized J/ψ,

$6.5 < p_T < 30 \text{ GeV}, |y| < 2.4$

- Non-prompt contribution in good agreement with models

3/26/11
Keith Ulmer -- University of Colorado
Y production

- Y reconstructed in decays to two muons
- 1S, 2S and 3S states all visible
- Mass resolution ~70 MeV for $|\eta| < 1.0$
- Three yields extracted simultaneously with maximum likelihood fits in p_T and y intervals

\[
\sigma(pp \rightarrow Y(1S)X) \cdot B(Y(1S) \rightarrow \mu^+\mu^-) = 7.37 \pm 0.13{\text{(stat.)}}^{+0.61}_{-0.42}{\text{(syst.)}} \pm 0.81{\text{(lumi.)}} \text{ nb},
\]
\[
\sigma(pp \rightarrow Y(2S)X) \cdot B(Y(2S) \rightarrow \mu^+\mu^-) = 1.90 \pm 0.09{\text{(stat.)}}^{+0.20}_{-0.14}{\text{(syst.)}} \pm 0.24{\text{(lumi.)}} \text{ nb},
\]
\[
\sigma(pp \rightarrow Y(3S)X) \cdot B(Y(3S) \rightarrow \mu^+\mu^-) = 1.02 \pm 0.07{\text{(stat.)}}^{+0.11}_{-0.08}{\text{(syst.)}} \pm 0.11{\text{(lumi.)}} \text{ nb}.
\]

- Fraction of 2S and 3S increases with p_T
- Results in good agreement with previous Tevatron measurements
The CMS tracker

- Diameter = 2.4m
- Length = 5.4m
- 75 million channels
- 220 m² of silicon
- Design operation -10°C

- Inside 3.8 T field
- Cooler temperature to slow radiation damage
- Coverage up to $|\eta| < 2.4$ with ≥ 3 pixel hits and ≥ 10 strip hits
- Efficiency >99% for central muons
Anti-k_T jet reconstruction algorithm

Slide from Francesco Pandolfi’s talk on Thursday

The Anti-k_T Algorithm

- Reference jet algorithm at CMS
- It's a k_T class algorithm (sequential recombination)
 - Infrared/collinear safe
 - One parameter: “cone size” parameter R
- But with inverse-momentum weights
 - Clusters soft particles around hard ones
 - Resulting jets are circular
 - Cannot extend beyond R
B tagging

- B tagging efficiency measured in MC and verified with semi-leptonic events with p_T^{rel} method
- B tagging fake rate measured in data with secondary vertex mass fit, and found to be in good agreement with MC
Exclusive cross section summary

- **Red** is CMS measurement
 - Inner errors are statistical
 - Outer are statistical + systematic
- **Grey** is MC@NLO prediction

CMS Preliminary, \(\sqrt{s}=7\) TeV

- \(pp \rightarrow B^+ X\), \(P_T>5\) GeV, \(|y|<2.4\)
 - Value: \(28.3 \pm 2.4 \pm 2.0 \pm 1.1\) \(\mu b\) (6 pb\(^{-1}\))

- \(pp \rightarrow B^0 X\), \(P_T>5\) GeV, \(|y|<2.2\)
 - Value: \(33.5 \pm 2.5 \pm 3.1 \pm 1.3\) \(\mu b\) (40 pb\(^{-1}\))

- \(pp \rightarrow B_s X \rightarrow J/\psi \phi X\), \(8<p_T<50\) GeV, \(|y|<2.4\) (x1000)
 - Value: \(6.9 \pm 0.6 \pm 0.5 \pm 0.3\) nb (40 pb\(^{-1}\))

Theory: MC@NLO

- CTEQ6M PDF, \(\mu=(m_b^2+p_T^2)^{1/2}\), \(m_b=4.75\) GeV

Spring 2011

3/26/11

Keith Ulmer -- University of Colorado

24/15
Additional correlation plots

- Results also shown for azimuthal angle $\Delta \phi$
- Fraction of colinear B’s increases with jet p_T

$\sqrt{s} = 7$ TeV, $L = 3.1$ pb1

Ratio to PYTHIA

CMS $\sqrt{s} = 7$ TeV, $L = 3.1$ pb1

$\sigma_{\Delta R < 0.8} / \sigma_{\Delta R > 2.4}$

Leading jet p_T (GeV)
B^0 and B_s lifetime plots

- Lifetime projections for B^0 (left) and B_s (right) from 2D fit to full p_T range