Determination of the proton PDFs at HERA

Rencontres de Moriond,
QCD and High Energy Interactions

16th March, 2012

Denys Lontkovskyi
ZEUS, DESY
On behalf of the H1 and ZEUS Collaborations
HERA collider. H1 and ZEUS experiments.

• HERA was unique $e^\pm p$ collider:
 • located at Hamburg, Germany;
 • operated during 1992 — 2007;

• Two general purpose collider experiments H1 and ZEUS:
 • optimised for measurement of the proton structure;
 • collected ~ 0.5 fb$^{-1}$ of integrated luminosity per experiment.
HERA collider. H1 and ZEUS experiments.

Kinematics:

- **momentum transfer:** \(Q^2 = -q^2 = -(k - k')^2 \)
- **Bjorken scaling variable:** \(x = \frac{Q^2}{2p \cdot q} \)

HERA was unique \(e^\pm p \) collider:
- located at Hamburg, Germany;
- operated during 1992 — 2007;

Two general purpose collider experiments H1 and ZEUS:
- optimised for measurement of the proton structure;
- collected \(\sim 0.5 \text{ fb}^{-1} \) of integrated luminosity per experiment.
Kinematics:

- momentum transfer: $Q^2 = -q^2 = -(k - k')^2$
- Bjorken scaling variable: $x = \frac{Q^2}{2p \cdot q}$

- HERA was unique $e^\pm p$ collider:
 - located at Hamburg, Germany;
 - operated during 1992 — 2007;

- Two general purpose collider experiments H1 and ZEUS:
 - optimised for measurement of the proton structure;
 - collected $\sim 0.5 \text{ fb}^{-1}$ of integrated luminosity per experiment.
Sensitivity of inclusive data to the proton PDF

H1 and ZEUS

\[\sigma_{\gamma NC}^+ (x, Q^2) \]

- **HERA I+II NC e^+p (prel.)**
- **HERAPDF1.0 e^+p**

\[Q^2 / \text{GeV}^2 \]

- **HERA Structure Functions Working Group June 2010**

- **HERA preliminary**

\[F_L \]

- **HERA preliminary**
- **HERAPDF1.0**
Sensitivity of inclusive data to the proton PDF

\[e^- \rightarrow W^- + \nu_e \]

\[e^+ \rightarrow W^+ + \bar{\nu}_e \]

H1 and ZEUS

\[\sigma_{\text{CC}}(x|Q^2) \]

\[Q^2 = 300 \text{ GeV}^2 \]

\[Q^2 = 500 \text{ GeV}^2 \]

\[Q^2 = 1000 \text{ GeV}^2 \]

\[Q^2 = 1500 \text{ GeV}^2 \]

\[Q^2 = 2000 \text{ GeV}^2 \]

\[Q^2 = 3000 \text{ GeV}^2 \]

\[Q^2 = 5000 \text{ GeV}^2 \]

\[Q^2 = 8000 \text{ GeV}^2 \]

\[Q^2 = 10000 \text{ GeV}^2 \]

\[Q^2 = 15000 \text{ GeV}^2 \]

\[Q^2 = 20000 \text{ GeV}^2 \]

\[Q^2 = 30000 \text{ GeV}^2 \]

\[x \]

\[\times 10^{-2} \]

\[\times 10^{-1} \]

\[\times 10^0 \]

\[\times 10^1 \]

\[\times 10^2 \]

\[\times 10^3 \]

\[\times 10^4 \]

\[\times 10^5 \]

\[\times 10^6 \]

\[\times 10^7 \]

\[\times 10^8 \]

\[\times 10^9 \]

\[\times 10^{10} \]

HERA I CC e\(^+\)p

HERAPDF1.0

HERA+II CC e\(^-\)p (prel.)

HERAPDF1.0

HERA Inclusive Working Group June 2010
QCD analysis

Analysis strategy:

- Parametrise PDFs at the starting scale Q_0^2
 - $xg, xu_V, xd_V, x\bar{U} = x(\bar{u} + \{\bar{c}\}), x\bar{D} = x(\bar{d} + \bar{s} + \{\bar{b}\})$
- Evolve PDFs using DGLAP equations to $Q^2 > Q_0^2$
 - NLO and NNLO DGLAP evolution QCDNUM [Comp. Ph. Comm. 182 (2011) 490]
 - Heavy flavours treated in GM-VFNS RT as for MSTW08
- Construct cross sections from PDFs and coefficient functions for every data point
- Perform χ^2 fit to the experimental data

HERA unique data:

- Consistent set of measurements $\leftrightarrow \chi^2_{min} + 1$ criterion
- No need for:
 - nuclear corrections
 - neutrino heavy target corrections
Jet data is sensitive to the gluon PDF and to the value of $\alpha_s (M_Z)$.

Denys Lontkovskyi (ZEUS, DESY) Proton structure measurements at HERA
16 March 2012 7 / 14
Jet data is sensitive to the gluon PDF and to the value of $\alpha_s(M_Z)$.
The $F_2^{c\bar{c}}$ allows to determine the optimal charm mass parameter (m_c^{model}) for the various schemes.
Sensitivity of $F_2^{c\bar{c}}$ to charm and gluon PDFs

The $F_2^{c\bar{c}}$ allows to determine the optimal charm mass parameter (m_c^{model}) for the various schemes.

HERAPDF1.0 + $F_2^{c\bar{c}}$(prel.)

- RT standard
- RT optimised
- ACOT-full
- S-ACOT-χ
- ZMVFNS

H1 and ZEUS (prel.)

χ^2 vs m_c^{model} / GeV
HERAPDF Structure Function Working Group June 2011

HERA I+II inclusive, jets, charm PDF Fit

$Q^2 = 10$ GeV2

- HERAPDF1.7 (prel.)
- exp. uncert.
- model uncert.
- parametrization uncert.

xf vs. x

$xf = 10$ GeV2

$xg (\times 0.05)$

$xd (\times 0.05)$

$xS (\times 0.05)$

[Herapdf1.7 (prel.), H1prelim-11-143, ZEUS-prel-11-010]
HERAPDF predictions for LHC

HERAPDFs provides competitive predictions for pp processes at high energy.

[CMS NOTE 2011/004] [arXiv:1112.6297]
HERAPDF1.5 NNLO provides a prediction consistent with measurements at LHC.
HERAFitter is an open source QCD fit package for pPDF determination. herafitter.hepforge.org

- **Data:**
 - DIS ep
 - Inclusive
 - Jets
 - DY pp and $p\bar{p}$
 - W, Z cross sections
 - Z rapidity
 - W asymmetries
 - Jets

- **Output:**
 - PDFs predefined scales
 - LHAPDF grids
 - Theory predictions per data points
 - Pulls per data points

- **Theory (DIS):**
 - ZM-VFNS accessed from QCDNUM
 - [Comp. Ph. Comm. 182 (2011) 490]
 - RT optimal as in MSTW

- **Treatment for jets:**
 - FastNLO: [hep-ph/0609285]
 - A wrapper around NLOjet++
 - A wrapper around MCFM, NLOjet++

- **Error treatment:**
 - Correlated, uncorrelated
 - Hessian method
 - MC method

- **Parametrisation studies:**
 - Standard functional form of PDFs
 - CTEQ
 - Chebyshev
Summary and conclusions

- New precise determination of pPDF HERAPDF 1.7 based on:
 - combined inclusive HERAI + HERAII NC and CC data;
 - reduced proton energy data;
 - HERA jet data;
 - combined $F_{2}^{c\bar{c}}$.

- Inclusion of jet data reduces strong correlation between α_s and gluon PDF.
- Combined $F_{2}^{c\bar{c}}$ is sensitive to the gluon and charm content of the proton and the charm mass parameter.
- Predictions based on the proton PDFs extracted from $e^\pm p$ data alone provide good description of the LHC data.

- Open source HERAFitterβ project.
NLO and NNLO DGLAP evolution QCDNUM

RT-VFNS (as for MSTW08)

PDF parametrisation at Q^2: $xg, xuv, xdV, x\bar{U} = x(\bar{u} + \{c\}), x\bar{D} = x(\bar{d} + \bar{s} + \{b\})$

- 10 free parameters fit (HERAPDF1.0, HERAPDF1.5 NLO)
 \[xf(x, Q^2_0) = Ax^B (1 - x)^C (1 + Dx + Ex^2) \]

- 14 free parameters fit (HERAPDF1.5 NNLO, HERAPDF1.6, HERAPDF1.7)
 \[xf(x, Q^2_0) = Ax^B (1 - x)^C (1 + Dx + Ex^2) - A' x^{B'} (1 - x)^{25} \]
HERAPDF1.5 (prel.)
exp. uncert.
model uncert.
parametrization uncert.

$$x_f^2 = 10 \text{ GeV}^2$$

HERAPDF Structure Function Working Group
March 2011

H1 and ZEUS HERA I+II 10 parameter PDF Fit

HERAPDF1.5 (prel.)
exp. uncert.
model uncert.
parametrization uncert.

HERAPDF1.5f (prel.)
HERAPDF1.5 (prel.)

D.

Denys Lontkovskyi (ZEUS, DESY) Proton structure measurements at HERA

16 March 2012 16 / 14